Snub tetraheptagonal tiling
| Snub tetraheptagonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling |
| Vertex configuration | 3.3.4.3.7 |
| Schläfli symbol | sr{7,4} or |
| Wythoff symbol | | 7 4 2 |
| Coxeter diagram | |
| Symmetry group | [7,4]+, (742) |
| Dual | Order-7-4 floret pentagonal tiling |
| Properties | Vertex-transitive Chiral |
In geometry, the snub tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{7,4}.
Images
Drawn in chiral pairs, with edges missing between black triangles:
Dual tiling
The dual is called an order-7-4 floret pentagonal tiling, defined by face configuration V3.3.4.3.7.
Related polyhedra and tiling
The snub tetraheptagonal tiling is sixth in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.
| 4n2 symmetry mutations of snub tilings: 3.3.4.3.n | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry 4n2 |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
| 242 | 342 | 442 | 542 | 642 | 742 | 842 | ∞42 | |
| Snub figures |
|
|
|
|
|
|
|
|
| Config. | 3.3.4.3.2 | 3.3.4.3.3 | 3.3.4.3.4 | 3.3.4.3.5 | 3.3.4.3.6 | 3.3.4.3.8 | 3.3.4.3.∞ | |
| Gyro figures |
|
|
|
|
||||
| Config. | V3.3.4.3.2 | V3.3.4.3.3 | V3.3.4.3.4 | V3.3.4.3.5 | V3.3.4.3.6 | V3.3.4.3.7 | V3.3.4.3.8 | V3.3.4.3.∞ |
| Uniform heptagonal/square tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
|
|
|
|
|
|
|
|
|
| ||
| {7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | s{7,4} | h{4,7} | |||
| Uniform duals | |||||||||||
|
|
|
|
|
|
|
| ||||
| V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 | ||
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 3-3-4-3-7.






























