In probability  and statistics , the skewed generalized "t" distribution is a family of continuous probability distributions . The distribution was first introduced by Panayiotis Theodossiou[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 1] [ 5] 
Definition 
Probability density function 
  
    
      
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        , 
        q 
        ) 
        = 
        
          
            p 
            
              2 
              v 
              σ 
              
                q 
                
                  
                    1 
                    p 
                   
                 
               
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              ) 
              
                
                  [ 
                  
                    1 
                    + 
                    
                      
                        
                          
                            | 
                           
                          x 
                          − 
                          μ 
                          + 
                          m 
                          
                            
                              | 
                             
                            
                              p 
                             
                           
                         
                        
                          q 
                          ( 
                          v 
                          σ 
                          
                            ) 
                            
                              p 
                             
                           
                          ( 
                          1 
                          + 
                          λ 
                          sgn 
                           
                          ( 
                          x 
                          − 
                          μ 
                          + 
                          m 
                          ) 
                          
                            ) 
                            
                              p 
                             
                           
                         
                       
                     
                   
                  ] 
                 
                
                  
                    
                      1 
                      p 
                     
                   
                  + 
                  q 
                 
               
             
           
         
       
     
    {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)={\frac {p}{2v\sigma q^{\frac {1}{p}}B({\frac {1}{p}},q)\left[1+{\frac {|x-\mu +m|^{p}}{q(v\sigma )^{p}(1+\lambda \operatorname {sgn}(x-\mu +m))^{p}}}\right]^{{\frac {1}{p}}+q}}}} 
   
 
where 
  
    
      
        B 
       
     
    {\displaystyle B} 
   
 beta function , 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 
  
    
      
        σ 
        > 
        0 
       
     
    {\displaystyle \sigma >0} 
   
 
  
    
      
        − 
        1 
        < 
        λ 
        < 
        1 
       
     
    {\displaystyle -1<\lambda <1} 
   
 
  
    
      
        p 
        > 
        0 
       
     
    {\displaystyle p>0} 
   
 
  
    
      
        q 
        > 
        0 
       
     
    {\displaystyle q>0} 
   
 kurtosis . 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
 
  
    
      
        v 
       
     
    {\displaystyle v} 
   
 
In the original parameterization[ 1] 
  
    
      
        m 
        = 
        λ 
        v 
        σ 
        
          
            
              2 
              
                q 
                
                  
                    1 
                    p 
                   
                 
               
              B 
              ( 
              
                
                  2 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  1 
                  p 
                 
               
              ) 
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              ) 
             
           
         
       
     
    {\displaystyle m=\lambda v\sigma {\frac {2q^{\frac {1}{p}}B({\frac {2}{p}},q-{\frac {1}{p}})}{B({\frac {1}{p}},q)}}} 
   
 and 
  
    
      
        v 
        = 
        
          
            
              q 
              
                − 
                
                  
                    1 
                    p 
                   
                 
               
             
            
              ( 
              1 
              + 
              3 
              
                λ 
                
                  2 
                 
               
              ) 
              
                
                  
                    B 
                    ( 
                    
                      
                        3 
                        p 
                       
                     
                    , 
                    q 
                    − 
                    
                      
                        2 
                        p 
                       
                     
                    ) 
                   
                  
                    B 
                    ( 
                    
                      
                        1 
                        p 
                       
                     
                    , 
                    q 
                    ) 
                   
                 
               
              − 
              4 
              
                λ 
                
                  2 
                 
               
              
                
                  
                    B 
                    ( 
                    
                      
                        2 
                        p 
                       
                     
                    , 
                    q 
                    − 
                    
                      
                        1 
                        p 
                       
                     
                    
                      ) 
                      
                        2 
                       
                     
                   
                  
                    B 
                    ( 
                    
                      
                        1 
                        p 
                       
                     
                    , 
                    q 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle v={\frac {q^{-{\frac {1}{p}}}}{\sqrt {(1+3\lambda ^{2}){\frac {B({\frac {3}{p}},q-{\frac {2}{p}})}{B({\frac {1}{p}},q)}}-4\lambda ^{2}{\frac {B({\frac {2}{p}},q-{\frac {1}{p}})^{2}}{B({\frac {1}{p}},q)^{2}}}}}}} 
   
 These values for 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
 
  
    
      
        v 
       
     
    {\displaystyle v} 
   
 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 
  
    
      
        p 
        q 
        > 
        1 
       
     
    {\displaystyle pq>1} 
   
 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
  
    
      
        p 
        q 
        > 
        2 
       
     
    {\displaystyle pq>2} 
   
 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
 
  
    
      
        p 
        q 
        > 
        1 
       
     
    {\displaystyle pq>1} 
   
 
  
    
      
        v 
       
     
    {\displaystyle v} 
   
 
  
    
      
        p 
        q 
        > 
        2 
       
     
    {\displaystyle pq>2} 
   
 
The parameterization that yields the simplest functional form of the probability density function sets 
  
    
      
        m 
        = 
        0 
       
     
    {\displaystyle m=0} 
   
 
  
    
      
        v 
        = 
        1 
       
     
    {\displaystyle v=1} 
   
 
  
    
      
        μ 
        + 
        
          
            
              2 
              v 
              σ 
              λ 
              
                q 
                
                  
                    1 
                    p 
                   
                 
               
              B 
              ( 
              
                
                  2 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  1 
                  p 
                 
               
              ) 
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              ) 
             
           
         
       
     
    {\displaystyle \mu +{\frac {2v\sigma \lambda q^{\frac {1}{p}}B({\frac {2}{p}},q-{\frac {1}{p}})}{B({\frac {1}{p}},q)}}} 
   
 and a variance of
  
    
      
        
          σ 
          
            2 
           
         
        
          q 
          
            
              2 
              p 
             
           
         
        ( 
        ( 
        1 
        + 
        3 
        
          λ 
          
            2 
           
         
        ) 
        
          
            
              B 
              ( 
              
                
                  3 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  2 
                  p 
                 
               
              ) 
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              ) 
             
           
         
        − 
        4 
        
          λ 
          
            2 
           
         
        
          
            
              B 
              ( 
              
                
                  2 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  1 
                  p 
                 
               
              
                ) 
                
                  2 
                 
               
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              
                ) 
                
                  2 
                 
               
             
           
         
        ) 
       
     
    {\displaystyle \sigma ^{2}q^{\frac {2}{p}}((1+3\lambda ^{2}){\frac {B({\frac {3}{p}},q-{\frac {2}{p}})}{B({\frac {1}{p}},q)}}-4\lambda ^{2}{\frac {B({\frac {2}{p}},q-{\frac {1}{p}})^{2}}{B({\frac {1}{p}},q)^{2}}})} 
   
 The 
  
    
      
        λ 
       
     
    {\displaystyle \lambda } 
   
 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        
          ∫ 
          
            − 
            ∞ 
           
          
            M 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        , 
        q 
        ) 
        
          d 
         
        x 
        = 
        
          
            
              1 
              − 
              λ 
             
            2 
           
         
       
     
    {\displaystyle \int _{-\infty }^{M}f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)\mathrm {d} x={\frac {1-\lambda }{2}}} 
   
 Since 
  
    
      
        − 
        1 
        < 
        λ 
        < 
        1 
       
     
    {\displaystyle -1<\lambda <1} 
   
 
  
    
      
        λ 
       
     
    {\displaystyle \lambda } 
   
 
  
    
      
        − 
        1 
        < 
        λ 
        < 
        0 
       
     
    {\displaystyle -1<\lambda <0} 
   
 
  
    
      
        0 
        < 
        λ 
        < 
        1 
       
     
    {\displaystyle 0<\lambda <1} 
   
 
  
    
      
        λ 
        = 
        0 
       
     
    {\displaystyle \lambda =0} 
   
 
Finally, 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 [ 1] 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
Moments 
Let 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
 
  
    
      
        
          h 
          
            t 
            h 
           
         
       
     
    {\displaystyle h^{th}} 
   
 
  
    
      
        E 
        [ 
        ( 
        X 
        − 
        E 
        ( 
        X 
        ) 
        
          ) 
          
            h 
           
         
        ] 
       
     
    {\displaystyle E[(X-E(X))^{h}]} 
   
 
  
    
      
        p 
        q 
        > 
        h 
       
     
    {\displaystyle pq>h} 
   
 
  
    
      
        
          ∑ 
          
            r 
            = 
            0 
           
          
            h 
           
         
        
          
            
              ( 
             
            
              h 
              r 
             
            
              ) 
             
           
         
        ( 
        ( 
        1 
        + 
        λ 
        
          ) 
          
            r 
            + 
            1 
           
         
        + 
        ( 
        − 
        1 
        
          ) 
          
            r 
           
         
        ( 
        1 
        − 
        λ 
        
          ) 
          
            r 
            + 
            1 
           
         
        ) 
        ( 
        − 
        λ 
        
          ) 
          
            h 
            − 
            r 
           
         
        
          
            
              ( 
              v 
              σ 
              
                ) 
                
                  h 
                 
               
              
                q 
                
                  
                    h 
                    p 
                   
                 
               
              B 
              ( 
              
                
                  
                    r 
                    + 
                    1 
                   
                  p 
                 
               
              , 
              q 
              − 
              
                
                  r 
                  p 
                 
               
              ) 
              B 
              ( 
              
                
                  2 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  1 
                  p 
                 
               
              
                ) 
                
                  h 
                  − 
                  r 
                 
               
             
            
              
                2 
                
                  r 
                  − 
                  h 
                  + 
                  1 
                 
               
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              
                ) 
                
                  h 
                  − 
                  r 
                  + 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle \sum _{r=0}^{h}{\binom {h}{r}}((1+\lambda )^{r+1}+(-1)^{r}(1-\lambda )^{r+1})(-\lambda )^{h-r}{\frac {(v\sigma )^{h}q^{\frac {h}{p}}B({\frac {r+1}{p}},q-{\frac {r}{p}})B({\frac {2}{p}},q-{\frac {1}{p}})^{h-r}}{2^{r-h+1}B({\frac {1}{p}},q)^{h-r+1}}}} 
   
 
The mean, for 
  
    
      
        p 
        q 
        > 
        1 
       
     
    {\displaystyle pq>1} 
   
 
  
    
      
        μ 
        + 
        
          
            
              2 
              v 
              σ 
              λ 
              
                q 
                
                  
                    1 
                    p 
                   
                 
               
              B 
              ( 
              
                
                  2 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  1 
                  p 
                 
               
              ) 
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              ) 
             
           
         
        − 
        m 
       
     
    {\displaystyle \mu +{\frac {2v\sigma \lambda q^{\frac {1}{p}}B({\frac {2}{p}},q-{\frac {1}{p}})}{B({\frac {1}{p}},q)}}-m} 
   
 The variance (i.e. 
  
    
      
        E 
        [ 
        ( 
        X 
        − 
        E 
        ( 
        X 
        ) 
        
          ) 
          
            2 
           
         
        ] 
       
     
    {\displaystyle E[(X-E(X))^{2}]} 
   
 
  
    
      
        p 
        q 
        > 
        2 
       
     
    {\displaystyle pq>2} 
   
 
  
    
      
        ( 
        v 
        σ 
        
          ) 
          
            2 
           
         
        
          q 
          
            
              2 
              p 
             
           
         
        ( 
        ( 
        1 
        + 
        3 
        
          λ 
          
            2 
           
         
        ) 
        
          
            
              B 
              ( 
              
                
                  3 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  2 
                  p 
                 
               
              ) 
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              ) 
             
           
         
        − 
        4 
        
          λ 
          
            2 
           
         
        
          
            
              B 
              ( 
              
                
                  2 
                  p 
                 
               
              , 
              q 
              − 
              
                
                  1 
                  p 
                 
               
              
                ) 
                
                  2 
                 
               
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              
                ) 
                
                  2 
                 
               
             
           
         
        ) 
       
     
    {\displaystyle (v\sigma )^{2}q^{\frac {2}{p}}((1+3\lambda ^{2}){\frac {B({\frac {3}{p}},q-{\frac {2}{p}})}{B({\frac {1}{p}},q)}}-4\lambda ^{2}{\frac {B({\frac {2}{p}},q-{\frac {1}{p}})^{2}}{B({\frac {1}{p}},q)^{2}}})} 
   
 The skewness (i.e. 
  
    
      
        E 
        [ 
        ( 
        X 
        − 
        E 
        ( 
        X 
        ) 
        
          ) 
          
            3 
           
         
        ] 
       
     
    {\displaystyle E[(X-E(X))^{3}]} 
   
 
  
    
      
        p 
        q 
        > 
        3 
       
     
    {\displaystyle pq>3} 
   
 
  
    
      
        
          
            
              2 
              
                q 
                
                  3 
                  
                    / 
                   
                  p 
                 
               
              λ 
              ( 
              v 
              σ 
              
                ) 
                
                  3 
                 
               
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              
                ) 
                
                  3 
                 
               
             
           
         
        
          
            ( 
           
         
        8 
        
          λ 
          
            2 
           
         
        B 
        ( 
        
          
            2 
            p 
           
         
        , 
        q 
        − 
        
          
            1 
            p 
           
         
        
          ) 
          
            3 
           
         
        − 
        3 
        ( 
        1 
        + 
        3 
        
          λ 
          
            2 
           
         
        ) 
        B 
        ( 
        
          
            1 
            p 
           
         
        , 
        q 
        ) 
       
     
    {\displaystyle {\frac {2q^{3/p}\lambda (v\sigma )^{3}}{B({\frac {1}{p}},q)^{3}}}{\Bigg (}8\lambda ^{2}B({\frac {2}{p}},q-{\frac {1}{p}})^{3}-3(1+3\lambda ^{2})B({\frac {1}{p}},q)} 
   
 
  
    
      
        × 
        B 
        ( 
        
          
            2 
            p 
           
         
        , 
        q 
        − 
        
          
            1 
            p 
           
         
        ) 
        B 
        ( 
        
          
            3 
            p 
           
         
        , 
        q 
        − 
        
          
            2 
            p 
           
         
        ) 
        + 
        2 
        ( 
        1 
        + 
        
          λ 
          
            2 
           
         
        ) 
        B 
        ( 
        
          
            1 
            p 
           
         
        , 
        q 
        
          ) 
          
            2 
           
         
        B 
        ( 
        
          
            4 
            p 
           
         
        , 
        q 
        − 
        
          
            3 
            p 
           
         
        ) 
        
          
            ) 
           
         
       
     
    {\displaystyle \times B({\frac {2}{p}},q-{\frac {1}{p}})B({\frac {3}{p}},q-{\frac {2}{p}})+2(1+\lambda ^{2})B({\frac {1}{p}},q)^{2}B({\frac {4}{p}},q-{\frac {3}{p}}){\Bigg )}} 
   
 The kurtosis (i.e. 
  
    
      
        E 
        [ 
        ( 
        X 
        − 
        E 
        ( 
        X 
        ) 
        
          ) 
          
            4 
           
         
        ] 
       
     
    {\displaystyle E[(X-E(X))^{4}]} 
   
 
  
    
      
        p 
        q 
        > 
        4 
       
     
    {\displaystyle pq>4} 
   
 
  
    
      
        
          
            
              
                q 
                
                  4 
                  
                    / 
                   
                  p 
                 
               
              ( 
              v 
              σ 
              
                ) 
                
                  4 
                 
               
             
            
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              
                ) 
                
                  4 
                 
               
             
           
         
        
          
            ( 
           
         
        − 
        48 
        
          λ 
          
            4 
           
         
        B 
        ( 
        
          
            2 
            p 
           
         
        , 
        q 
        − 
        
          
            1 
            p 
           
         
        
          ) 
          
            4 
           
         
        + 
        24 
        
          λ 
          
            2 
           
         
        ( 
        1 
        + 
        3 
        
          λ 
          
            2 
           
         
        ) 
        B 
        ( 
        
          
            1 
            p 
           
         
        , 
        q 
        ) 
        B 
        ( 
        
          
            2 
            p 
           
         
        , 
        q 
        − 
        
          
            1 
            p 
           
         
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle {\frac {q^{4/p}(v\sigma )^{4}}{B({\frac {1}{p}},q)^{4}}}{\Bigg (}-48\lambda ^{4}B({\frac {2}{p}},q-{\frac {1}{p}})^{4}+24\lambda ^{2}(1+3\lambda ^{2})B({\frac {1}{p}},q)B({\frac {2}{p}},q-{\frac {1}{p}})^{2}} 
   
 
  
    
      
        × 
        B 
        ( 
        
          
            3 
            p 
           
         
        , 
        q 
        − 
        
          
            2 
            p 
           
         
        ) 
        − 
        32 
        
          λ 
          
            2 
           
         
        ( 
        1 
        + 
        
          λ 
          
            2 
           
         
        ) 
        B 
        ( 
        
          
            1 
            p 
           
         
        , 
        q 
        
          ) 
          
            2 
           
         
        B 
        ( 
        
          
            2 
            p 
           
         
        , 
        q 
        − 
        
          
            1 
            p 
           
         
        ) 
        B 
        ( 
        
          
            4 
            p 
           
         
        , 
        q 
        − 
        
          
            3 
            p 
           
         
        ) 
       
     
    {\displaystyle \times B({\frac {3}{p}},q-{\frac {2}{p}})-32\lambda ^{2}(1+\lambda ^{2})B({\frac {1}{p}},q)^{2}B({\frac {2}{p}},q-{\frac {1}{p}})B({\frac {4}{p}},q-{\frac {3}{p}})} 
   
 
  
    
      
        + 
        ( 
        1 
        + 
        10 
        
          λ 
          
            2 
           
         
        + 
        5 
        
          λ 
          
            4 
           
         
        ) 
        B 
        ( 
        
          
            1 
            p 
           
         
        , 
        q 
        
          ) 
          
            3 
           
         
        B 
        ( 
        
          
            5 
            p 
           
         
        , 
        q 
        − 
        
          
            4 
            p 
           
         
        ) 
        
          
            ) 
           
         
       
     
    {\displaystyle +(1+10\lambda ^{2}+5\lambda ^{4})B({\frac {1}{p}},q)^{3}B({\frac {5}{p}},q-{\frac {4}{p}}){\Bigg )}} 
   
 
Special Cases 
Special and limiting cases of the skewed generalized t distribution include the skewed generalized error distribution, the generalized t distribution introduced by McDonald and Newey,[ 6] [ 8] generalized normal distribution ), a skewed normal distribution, the student t distribution , the skewed Cauchy distribution, the Laplace distribution , the uniform distribution , the normal distribution , and the Cauchy distribution . The graphic below, adapted from Hansen, McDonald, and Newey,[ 2] 
The skewed generalized t distribution tree 
Skewed generalized error distribution 
The Skewed Generalized Error Distribution (SGED) has the pdf:
  
    
      
        
          lim 
          
            q 
            → 
            ∞ 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        , 
        q 
        ) 
       
     
    {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)} 
   
 
  
    
      
        = 
        
          f 
          
            SGED 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        ) 
        = 
        
          
            p 
            
              2 
              v 
              σ 
              Γ 
              ( 
              
                
                  1 
                  p 
                 
               
              ) 
             
           
         
        
          e 
          
            − 
            
              
                ( 
                
                  
                    
                      
                        | 
                       
                      x 
                      − 
                      μ 
                      + 
                      m 
                      
                        | 
                       
                     
                    
                      v 
                      σ 
                      [ 
                      1 
                      + 
                      λ 
                      sgn 
                       
                      ( 
                      x 
                      − 
                      μ 
                      + 
                      m 
                      ) 
                      ] 
                     
                   
                 
                ) 
               
              
                p 
               
             
           
         
       
     
    {\displaystyle =f_{\text{SGED}}(x;\mu ,\sigma ,\lambda ,p)={\frac {p}{2v\sigma \Gamma ({\frac {1}{p}})}}e^{-\left({\frac {|x-\mu +m|}{v\sigma [1+\lambda \operatorname {sgn}(x-\mu +m)]}}\right)^{p}}} 
   
 where 
  
    
      
        m 
        = 
        λ 
        v 
        σ 
        
          
            
              
                2 
                
                  
                    2 
                    p 
                   
                 
               
              Γ 
              ( 
              
                
                  1 
                  2 
                 
               
              + 
              
                
                  1 
                  p 
                 
               
              ) 
             
            
              π 
             
           
         
       
     
    {\displaystyle m=\lambda v\sigma {\frac {2^{\frac {2}{p}}\Gamma ({\frac {1}{2}}+{\frac {1}{p}})}{\sqrt {\pi }}}} 
   
 gives a mean of 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 
  
    
      
        v 
        = 
        
          
            
              
                π 
                Γ 
                ( 
                
                  
                    1 
                    p 
                   
                 
                ) 
               
              
                π 
                ( 
                1 
                + 
                3 
                
                  λ 
                  
                    2 
                   
                 
                ) 
                Γ 
                ( 
                
                  
                    3 
                    p 
                   
                 
                ) 
                − 
                
                  16 
                  
                    
                      1 
                      p 
                     
                   
                 
                
                  λ 
                  
                    2 
                   
                 
                Γ 
                ( 
                
                  
                    1 
                    2 
                   
                 
                + 
                
                  
                    1 
                    p 
                   
                 
                
                  ) 
                  
                    2 
                   
                 
                Γ 
                ( 
                
                  
                    1 
                    p 
                   
                 
                ) 
               
             
           
         
       
     
    {\displaystyle v={\sqrt {\frac {\pi \Gamma ({\frac {1}{p}})}{\pi (1+3\lambda ^{2})\Gamma ({\frac {3}{p}})-16^{\frac {1}{p}}\lambda ^{2}\Gamma ({\frac {1}{2}}+{\frac {1}{p}})^{2}\Gamma ({\frac {1}{p}})}}}} 
   
 gives a variance of 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
Generalized t -distribution 
The generalized t -distribution (GT) has the pdf:  
  
    
      
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        
          = 
         
        0 
        , 
        p 
        , 
        q 
        ) 
       
     
    {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p,q)} 
   
 
  
    
      
        = 
        
          f 
          
            GT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        p 
        , 
        q 
        ) 
        = 
        
          
            p 
            
              2 
              v 
              σ 
              
                q 
                
                  
                    1 
                    p 
                   
                 
               
              B 
              ( 
              
                
                  1 
                  p 
                 
               
              , 
              q 
              ) 
              
                
                  [ 
                  
                    1 
                    + 
                    
                      
                        
                          
                            | 
                            
                              x 
                              − 
                              μ 
                             
                            | 
                           
                          
                            p 
                           
                         
                        
                          q 
                          ( 
                          v 
                          σ 
                          
                            ) 
                            
                              p 
                             
                           
                         
                       
                     
                   
                  ] 
                 
                
                  
                    
                      1 
                      p 
                     
                   
                  + 
                  q 
                 
               
             
           
         
       
     
    {\displaystyle =f_{\text{GT}}(x;\mu ,\sigma ,p,q)={\frac {p}{2v\sigma q^{\frac {1}{p}}B({\frac {1}{p}},q)\left[1+{\frac {\left|x-\mu \right|^{p}}{q(v\sigma )^{p}}}\right]^{{\frac {1}{p}}+q}}}} 
   
 where 
  
    
      
        v 
        = 
        
          
            1 
            
              q 
              
                
                  1 
                  p 
                 
               
             
           
         
        
          
            
              
                B 
                ( 
                
                  
                    1 
                    p 
                   
                 
                , 
                q 
                ) 
               
              
                B 
                ( 
                
                  
                    3 
                    p 
                   
                 
                , 
                q 
                − 
                
                  
                    2 
                    p 
                   
                 
                ) 
               
             
           
         
       
     
    {\displaystyle v={\frac {1}{q^{\frac {1}{p}}}}{\sqrt {\frac {B({\frac {1}{p}},q)}{B({\frac {3}{p}},q-{\frac {2}{p}})}}}} 
   
 gives a variance of 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
Skewed t -distribution 
The skewed t -distribution (ST) has the pdf:
  
    
      
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        
          = 
         
        2 
        , 
        q 
        ) 
       
     
    {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}2,q)} 
   
 
  
    
      
        = 
        
          f 
          
            ST 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        q 
        ) 
        = 
        
          
            
              Γ 
              ( 
              
                
                  1 
                  2 
                 
               
              + 
              q 
              ) 
             
            
              v 
              σ 
              ( 
              π 
              q 
              
                ) 
                
                  
                    1 
                    2 
                   
                 
               
              Γ 
              ( 
              q 
              ) 
              
                
                  [ 
                  
                    1 
                    + 
                    
                      
                        
                          
                            | 
                            
                              x 
                              − 
                              μ 
                              + 
                              m 
                             
                            | 
                           
                          
                            2 
                           
                         
                        
                          q 
                          ( 
                          v 
                          σ 
                          
                            ) 
                            
                              2 
                             
                           
                          ( 
                          1 
                          + 
                          λ 
                          sgn 
                           
                          ( 
                          x 
                          − 
                          μ 
                          + 
                          m 
                          ) 
                          
                            ) 
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ] 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                  + 
                  q 
                 
               
             
           
         
       
     
    {\displaystyle =f_{\text{ST}}(x;\mu ,\sigma ,\lambda ,q)={\frac {\Gamma ({\frac {1}{2}}+q)}{v\sigma (\pi q)^{\frac {1}{2}}\Gamma (q)\left[1+{\frac {\left|x-\mu +m\right|^{2}}{q(v\sigma )^{2}(1+\lambda \operatorname {sgn}(x-\mu +m))^{2}}}\right]^{{\frac {1}{2}}+q}}}} 
   
 where 
  
    
      
        m 
        = 
        λ 
        v 
        σ 
        
          
            
              2 
              
                q 
                
                  
                    1 
                    2 
                   
                 
               
              Γ 
              ( 
              q 
              − 
              
                
                  1 
                  2 
                 
               
              ) 
             
            
              
                π 
                
                  
                    1 
                    2 
                   
                 
               
              Γ 
              ( 
              q 
              ) 
             
           
         
       
     
    {\displaystyle m=\lambda v\sigma {\frac {2q^{\frac {1}{2}}\Gamma (q-{\frac {1}{2}})}{\pi ^{\frac {1}{2}}\Gamma (q)}}} 
   
 gives a mean of 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 
  
    
      
        v 
        = 
        
          
            1 
            
              
                q 
                
                  
                    1 
                    2 
                   
                 
               
              
                
                  ( 
                  1 
                  + 
                  3 
                  
                    λ 
                    
                      2 
                     
                   
                  ) 
                  
                    
                      1 
                      
                        2 
                        q 
                        − 
                        2 
                       
                     
                   
                  − 
                  
                    
                      
                        4 
                        
                          λ 
                          
                            2 
                           
                         
                       
                      π 
                     
                   
                  
                    
                      ( 
                      
                        
                          
                            Γ 
                            ( 
                            q 
                            − 
                            
                              
                                1 
                                2 
                               
                             
                            ) 
                           
                          
                            Γ 
                            ( 
                            q 
                            ) 
                           
                         
                       
                      ) 
                     
                    
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle v={\frac {1}{q^{\frac {1}{2}}{\sqrt {(1+3\lambda ^{2}){\frac {1}{2q-2}}-{\frac {4\lambda ^{2}}{\pi }}\left({\frac {\Gamma (q-{\frac {1}{2}})}{\Gamma (q)}}\right)^{2}}}}}} 
   
 gives a variance of 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
Skewed Laplace distribution 
The skewed Laplace distribution (SLaplace) has the pdf:
  
    
      
        
          lim 
          
            q 
            → 
            ∞ 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        
          = 
         
        1 
        , 
        q 
        ) 
       
     
    {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}1,q)} 
   
 
  
    
      
        = 
        
          f 
          
            SLaplace 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        ) 
        = 
        
          
            1 
            
              2 
              v 
              σ 
             
           
         
        
          e 
          
            − 
            
              
                
                  
                    | 
                   
                  x 
                  − 
                  μ 
                  + 
                  m 
                  
                    | 
                   
                 
                
                  v 
                  σ 
                  ( 
                  1 
                  + 
                  λ 
                  sgn 
                   
                  ( 
                  x 
                  − 
                  μ 
                  + 
                  m 
                  ) 
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle =f_{\text{SLaplace}}(x;\mu ,\sigma ,\lambda )={\frac {1}{2v\sigma }}e^{-{\frac {|x-\mu +m|}{v\sigma (1+\lambda \operatorname {sgn}(x-\mu +m))}}}} 
   
 where 
  
    
      
        m 
        = 
        2 
        v 
        σ 
        λ 
       
     
    {\displaystyle m=2v\sigma \lambda } 
   
 gives a mean of 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 
  
    
      
        v 
        = 
        [ 
        2 
        ( 
        1 
        + 
        
          λ 
          
            2 
           
         
        ) 
        
          ] 
          
            − 
            
              
                1 
                2 
               
             
           
         
       
     
    {\displaystyle v=[2(1+\lambda ^{2})]^{-{\frac {1}{2}}}} 
   
 gives a variance of 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
Generalized error distribution 
The generalized error distribution (GED, also known as the generalized normal distribution ) has the pdf:
  
    
      
        
          lim 
          
            q 
            → 
            ∞ 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        
          = 
         
        0 
        , 
        p 
        , 
        q 
        ) 
       
     
    {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p,q)} 
   
 
  
    
      
        = 
        
          f 
          
            GED 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        p 
        ) 
        = 
        
          
            p 
            
              2 
              v 
              σ 
              Γ 
              ( 
              
                
                  1 
                  p 
                 
               
              ) 
             
           
         
        
          e 
          
            − 
            
              
                ( 
                
                  
                    
                      
                        | 
                       
                      x 
                      − 
                      μ 
                      
                        | 
                       
                     
                    
                      v 
                      σ 
                     
                   
                 
                ) 
               
              
                p 
               
             
           
         
       
     
    {\displaystyle =f_{\text{GED}}(x;\mu ,\sigma ,p)={\frac {p}{2v\sigma \Gamma ({\frac {1}{p}})}}e^{-\left({\frac {|x-\mu |}{v\sigma }}\right)^{p}}} 
   
 where 
  
    
      
        v 
        = 
        
          
            
              
                Γ 
                ( 
                
                  
                    1 
                    p 
                   
                 
                ) 
               
              
                Γ 
                ( 
                
                  
                    3 
                    p 
                   
                 
                ) 
               
             
           
         
       
     
    {\displaystyle v={\sqrt {\frac {\Gamma ({\frac {1}{p}})}{\Gamma ({\frac {3}{p}})}}}} 
   
 gives a variance of 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
Skewed normal distribution 
The skewed normal distribution (SNormal) has the pdf:
  
    
      
        
          lim 
          
            q 
            → 
            ∞ 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        
          = 
         
        2 
        , 
        q 
        ) 
       
     
    {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}2,q)} 
   
 
  
    
      
        = 
        
          f 
          
            SNormal 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        ) 
        = 
        
          
            1 
            
              v 
              σ 
              
                
                  π 
                 
               
             
           
         
        
          e 
          
            − 
            
              
                [ 
                
                  
                    
                      
                        | 
                       
                      x 
                      − 
                      μ 
                      + 
                      m 
                      
                        | 
                       
                     
                    
                      v 
                      σ 
                      ( 
                      1 
                      + 
                      λ 
                      sgn 
                       
                      ( 
                      x 
                      − 
                      μ 
                      + 
                      m 
                      ) 
                      ) 
                     
                   
                 
                ] 
               
              
                2 
               
             
           
         
       
     
    {\displaystyle =f_{\text{SNormal}}(x;\mu ,\sigma ,\lambda )={\frac {1}{v\sigma {\sqrt {\pi }}}}e^{-\left[{\frac {|x-\mu +m|}{v\sigma (1+\lambda \operatorname {sgn}(x-\mu +m))}}\right]^{2}}} 
   
 where 
  
    
      
        m 
        = 
        λ 
        v 
        σ 
        
          
            2 
            
              π 
             
           
         
       
     
    {\displaystyle m=\lambda v\sigma {\frac {2}{\sqrt {\pi }}}} 
   
 gives a mean of 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 
  
    
      
        v 
        = 
        
          
            
              
                2 
                π 
               
              
                π 
                − 
                8 
                
                  λ 
                  
                    2 
                   
                 
                + 
                3 
                π 
                
                  λ 
                  
                    2 
                   
                 
               
             
           
         
       
     
    {\displaystyle v={\sqrt {\frac {2\pi }{\pi -8\lambda ^{2}+3\pi \lambda ^{2}}}}} 
   
 gives a variance of 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
The distribution should not be confused with the skew normal distribution  or another asymmetric version . Indeed, the distribution here is a special case of a bi-Gaussian, whose left and right widths are proportional to 
  
    
      
        1 
        − 
        λ 
       
     
    {\displaystyle 1-\lambda } 
   
 
  
    
      
        1 
        + 
        λ 
       
     
    {\displaystyle 1+\lambda } 
   
 
t -distributionThe Student's t-distribution  (T) has the pdf:
  
    
      
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        
          = 
         
        0 
        , 
        σ 
        
          = 
         
        1 
        , 
        λ 
        
          = 
         
        0 
        , 
        p 
        
          = 
         
        2 
        , 
        q 
        
          = 
         
        
          
            
              d 
              2 
             
           
         
        ) 
       
     
    {\displaystyle f_{\text{SGT}}(x;\mu {=}0,\sigma {=}1,\lambda {=}0,p{=}2,q{=}{\tfrac {d}{2}})} 
   
 
  
    
      
        = 
        
          f 
          
            T 
           
         
        ( 
        x 
        ; 
        d 
        ) 
        = 
        
          
            
              Γ 
              ( 
              
                
                  
                    d 
                    + 
                    1 
                   
                  2 
                 
               
              ) 
             
            
              ( 
              π 
              d 
              
                ) 
                
                  
                    1 
                    2 
                   
                 
               
              Γ 
              ( 
              
                
                  d 
                  2 
                 
               
              ) 
             
           
         
        
          
            ( 
            
              1 
              + 
              
                
                  
                    x 
                    
                      2 
                     
                   
                  d 
                 
               
             
            ) 
           
          
            − 
            
              
                
                  d 
                  + 
                  1 
                 
                2 
               
             
           
         
       
     
    {\displaystyle =f_{\text{T}}(x;d)={\frac {\Gamma ({\frac {d+1}{2}})}{(\pi d)^{\frac {1}{2}}\Gamma ({\frac {d}{2}})}}\left(1+{\frac {x^{2}}{d}}\right)^{-{\frac {d+1}{2}}}} 
   
 
  
    
      
        v 
        = 
        
          
            2 
           
         
       
     
    {\displaystyle v={\sqrt {2}}} 
   
 
Skewed Cauchy distribution 
The skewed cauchy distribution (SCauchy) has the pdf:
  
    
      
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        
          = 
         
        2 
        , 
        q 
        
          = 
         
        
          
            
              1 
              2 
             
           
         
        ) 
       
     
    {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}2,q{=}{\tfrac {1}{2}})} 
   
 
  
    
      
        = 
        
          f 
          
            SCauchy 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        ) 
        = 
        
          
            1 
            
              σ 
              π 
              
                [ 
                
                  1 
                  + 
                  
                    
                      
                        
                          | 
                          
                            x 
                            − 
                            μ 
                           
                          | 
                         
                        
                          2 
                         
                       
                      
                        
                          σ 
                          
                            2 
                           
                         
                        ( 
                        1 
                        + 
                        λ 
                        sgn 
                         
                        ( 
                        x 
                        − 
                        μ 
                        ) 
                        
                          ) 
                          
                            2 
                           
                         
                       
                     
                   
                 
                ] 
               
             
           
         
       
     
    {\displaystyle =f_{\text{SCauchy}}(x;\mu ,\sigma ,\lambda )={\frac {1}{\sigma \pi \left[1+{\frac {\left|x-\mu \right|^{2}}{\sigma ^{2}(1+\lambda \operatorname {sgn}(x-\mu ))^{2}}}\right]}}} 
   
 
  
    
      
        v 
        = 
        
          
            2 
           
         
       
     
    {\displaystyle v={\sqrt {2}}} 
   
 
  
    
      
        m 
        = 
        0 
       
     
    {\displaystyle m=0} 
   
 
The mean, variance, skewness, and kurtosis of the skewed Cauchy distribution are all undefined.
Laplace distribution 
The Laplace distribution  has the pdf:
  
    
      
        
          lim 
          
            q 
            → 
            ∞ 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        
          = 
         
        0 
        , 
        p 
        
          = 
         
        1 
        , 
        q 
        ) 
       
     
    {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p{=}1,q)} 
   
 
  
    
      
        = 
        
          f 
          
            Laplace 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        ) 
        = 
        
          
            1 
            
              2 
              σ 
             
           
         
        
          e 
          
            − 
            
              
                
                  
                    | 
                   
                  x 
                  − 
                  μ 
                  
                    | 
                   
                 
                σ 
               
             
           
         
       
     
    {\displaystyle =f_{\text{Laplace}}(x;\mu ,\sigma )={\frac {1}{2\sigma }}e^{-{\frac {|x-\mu |}{\sigma }}}} 
   
 
  
    
      
        v 
        = 
        1 
       
     
    {\displaystyle v=1} 
   
 
The uniform distribution  has the pdf:
  
    
      
        
          lim 
          
            p 
            → 
            ∞ 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        , 
        p 
        , 
        q 
        ) 
       
     
    {\displaystyle \lim _{p\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)} 
   
 
  
    
      
        = 
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    
                      1 
                      
                        2 
                        v 
                        σ 
                       
                     
                   
                 
                
                  
                    | 
                   
                  x 
                  − 
                  μ 
                  
                    | 
                   
                  < 
                  v 
                  σ 
                 
               
              
                
                  0 
                 
                
                  
                    o 
                    t 
                    h 
                    e 
                    r 
                    w 
                    i 
                    s 
                    e 
                   
                 
               
             
             
         
       
     
    {\displaystyle =f(x)={\begin{cases}{\frac {1}{2v\sigma }}&|x-\mu |<v\sigma \\0&\mathrm {otherwise} \end{cases}}} 
   
 Thus the standard uniform parameterization is obtained if 
  
    
      
        μ 
        = 
        
          
            
              a 
              + 
              b 
             
            2 
           
         
       
     
    {\displaystyle \mu ={\frac {a+b}{2}}} 
   
 
  
    
      
        v 
        = 
        1 
       
     
    {\displaystyle v=1} 
   
 
  
    
      
        σ 
        = 
        
          
            
              b 
              − 
              a 
             
            2 
           
         
       
     
    {\displaystyle \sigma ={\frac {b-a}{2}}} 
   
 
Normal distribution 
The normal distribution  has the pdf:
  
    
      
        
          lim 
          
            q 
            → 
            ∞ 
           
         
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        
          = 
         
        0 
        , 
        p 
        
          = 
         
        2 
        , 
        q 
        ) 
       
     
    {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p{=}2,q)} 
   
 
  
    
      
        = 
        
          f 
          
            Normal 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        ) 
        = 
        
          
            
              e 
              
                − 
                
                  
                    ( 
                    
                      
                        
                          
                            | 
                           
                          x 
                          − 
                          μ 
                          
                            | 
                           
                         
                        
                          v 
                          σ 
                         
                       
                     
                    ) 
                   
                  
                    2 
                   
                 
               
             
            
              v 
              σ 
              
                
                  π 
                 
               
             
           
         
       
     
    {\displaystyle =f_{\text{Normal}}(x;\mu ,\sigma )={\frac {e^{-\left({\frac {|x-\mu |}{v\sigma }}\right)^{2}}}{v\sigma {\sqrt {\pi }}}}} 
   
 where 
  
    
      
        v 
        = 
        
          
            2 
           
         
       
     
    {\displaystyle v={\sqrt {2}}} 
   
 gives a variance of 
  
    
      
        
          σ 
          
            2 
           
         
       
     
    {\displaystyle \sigma ^{2}} 
   
 
Cauchy Distribution 
The Cauchy distribution  has the pdf:
  
    
      
        
          f 
          
            SGT 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        , 
        λ 
        
          = 
         
        0 
        , 
        p 
        
          = 
         
        2 
        , 
        q 
        
          = 
         
        
          
            
              1 
              2 
             
           
         
        ) 
       
     
    {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p{=}2,q{=}{\tfrac {1}{2}})} 
   
 
  
    
      
        = 
        
          f 
          
            Cauchy 
           
         
        ( 
        x 
        ; 
        μ 
        , 
        σ 
        ) 
        = 
        
          
            1 
            
              σ 
              π 
              
                [ 
                
                  1 
                  + 
                  
                    
                      ( 
                      
                        
                          
                            x 
                            − 
                            μ 
                           
                          σ 
                         
                       
                      ) 
                     
                    
                      2 
                     
                   
                 
                ] 
               
             
           
         
       
     
    {\displaystyle =f_{\text{Cauchy}}(x;\mu ,\sigma )={\frac {1}{\sigma \pi \left[1+\left({\frac {x-\mu }{\sigma }}\right)^{2}\right]}}} 
   
 
  
    
      
        v 
        = 
        
          
            2 
           
         
       
     
    {\displaystyle v={\sqrt {2}}} 
   
 
References 
Hansen, B. (1994). "Autoregressive Conditional Density Estimation". International Economic Review 35  (3): 705– 730. doi :10.2307/2527081 . JSTOR  2527081 . Hansen, C.; McDonald, J.; Newey, W. (2010). "Instrumental Variables Estimation with Flexible Distributions". Journal of Business and Economic Statistics 28 : 13– 25. doi :10.1198/jbes.2009.06161 . hdl :10419/79273 S2CID  11370711 . Hansen, C.; McDonald, J.; Theodossiou, P. (2007). "Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models" . Economics: The Open-Access, Open-Assessment e-Journal . 1  (2007– 7): 1. doi :10.5018/economics-ejournal.ja.2007-7 hdl :20.500.14279/1024  McDonald, J.; Michefelder, R.; Theodossiou, P. (2009). "Evaluation of Robust Regression Estimation Methods and Intercept Bias: A Capital Asset Pricing Model Application"  (PDF) . Multinational Finance Journal . 15  (3/4): 293– 321. doi :10.17578/13-3/4-6 . S2CID  15012865 . McDonald, J.; Michelfelder, R.; Theodossiou, P. (2010). "Robust Estimation with Flexible Parametric Distributions: Estimation of Utility Stock Betas". Quantitative Finance . 10  (4): 375– 387. doi :10.1080/14697680902814241 . S2CID  11130911 . McDonald, J.; Newey, W. (1988). "Partially Adaptive Estimation of Regression Models via the Generalized t Distribution". Econometric Theory 4  (3): 428– 457. doi :10.1017/s0266466600013384 . S2CID  120305707 . Savva, C.; Theodossiou, P. (2015). "Skewness and the Relation between Risk and Return". Management Science  Theodossiou, P. (1998). "Financial Data and the Skewed Generalized T Distribution". Management Science 44  (12–part–1): 1650– 1661. doi :10.1287/mnsc.44.12.1650 . 
External links 
Notes 
^ a b c d   Theodossiou, P (1998). "Financial Data and the Skewed Generalized T Distribution". Management Science . 44  (12–part–1): 1650– 1661. doi :10.1287/mnsc.44.12.1650 . ^ a b   Hansen, C.; McDonald, J.; Newey, W. (2010). "Instrumental Variables Estimation with Flexible Distributions". Journal of Business and Economic Statistics . 28 : 13– 25. doi :10.1198/jbes.2009.06161 . hdl :10419/79273 S2CID  11370711 . ^ Hansen, C., J. McDonald, and P. Theodossiou (2007) "Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models" Economics: The Open-Access, Open-Assessment E-Journal  
^ McDonald, J.; Michelfelder, R.; Theodossiou, P. (2009). "Evaluation of Robust Regression Estimation Methods and Intercept Bias: A Capital Asset Pricing Model Application"  (PDF) . Multinational Finance Journal . 15  (3/4): 293– 321. doi :10.17578/13-3/4-6 . S2CID  15012865 . ^ a b   McDonald J., R. Michelfelder, and P. Theodossiou (2010) "Robust Estimation with Flexible Parametric Distributions: Estimation of Utility Stock Betas" Quantitative Finance  375-387. 
^ a b   McDonald, J.; Newey, W. (1998). "Partially Adaptive Estimation of Regression Models via the Generalized t Distribution". Econometric Theory . 4  (3): 428– 457. doi :10.1017/S0266466600013384 . S2CID  120305707 . ^ Savva C. and P. Theodossiou (2015) "Skewness and the Relation between Risk and Return" Management Science , forthcoming. 
^ Hansen, B (1994). "Autoregressive Conditional Density Estimation". International Economic Review . 35  (3): 705– 730. doi :10.2307/2527081 . JSTOR  2527081 .   
Discrete  
with finite  with infinite  
Continuous  
supported on a  supported on a  supported  with support  
Mixed  
Multivariate  Directional Degenerate   singular Families