In trigonometry , trigonometric identities  are equalities  that involve trigonometric functions  and are true for every value of the occurring variables  for which both sides of the equality are defined. Geometrically, these are identities  involving certain functions of one or more angles . They are distinct from triangle identities , which are identities potentially involving angles but also involving side lengths or other lengths of a triangle .
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration  of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function , and then simplifying the resulting integral with a trigonometric identity.
Pythagorean identities 
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse. The triangle shaded blue illustrates the identity 
  
    
      
        1 
        + 
        
          cot 
          
            2 
           
         
         
        θ 
        = 
        
          csc 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle 1+\cot ^{2}\theta =\csc ^{2}\theta } 
   
 
  
    
      
        
          tan 
          
            2 
           
         
         
        θ 
        + 
        1 
        = 
        
          sec 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle \tan ^{2}\theta +1=\sec ^{2}\theta } 
   
  The basic relationship between the sine and cosine  is given by the Pythagorean identity:
  
    
      
        
          sin 
          
            2 
           
         
         
        θ 
        + 
        
          cos 
          
            2 
           
         
         
        θ 
        = 
        1 
        , 
       
     
    {\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1,} 
   
 
where 
  
    
      
        
          sin 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle \sin ^{2}\theta } 
   
 
  
    
      
        
          
            ( 
            sin 
             
            θ 
            ) 
           
          
            2 
           
         
       
     
    {\displaystyle {(\sin \theta )}^{2}} 
   
 
  
    
      
        
          cos 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle \cos ^{2}\theta } 
   
 
  
    
      
        
          
            ( 
            cos 
             
            θ 
            ) 
           
          
            2 
           
         
        . 
       
     
    {\displaystyle {(\cos \theta )}^{2}.} 
   
 
This can be viewed as a version of the Pythagorean theorem , and follows from the equation 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 unit circle . This equation can be solved for either the sine or the cosine:
  
    
      
        
          
            
              
                sin 
                 
                θ 
               
              
                = 
                ± 
                
                  
                    1 
                    − 
                    
                      cos 
                      
                        2 
                       
                     
                     
                    θ 
                   
                 
                , 
               
             
            
              
                cos 
                 
                θ 
               
              
                = 
                ± 
                
                  
                    1 
                    − 
                    
                      sin 
                      
                        2 
                       
                     
                     
                    θ 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin \theta &=\pm {\sqrt {1-\cos ^{2}\theta }},\\\cos \theta &=\pm {\sqrt {1-\sin ^{2}\theta }}.\end{aligned}}} 
   
 
where the sign depends on the quadrant  of 
  
    
      
        θ 
        . 
       
     
    {\displaystyle \theta .} 
   
 
Dividing this identity by 
  
    
      
        
          sin 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle \sin ^{2}\theta } 
   
 
  
    
      
        
          cos 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle \cos ^{2}\theta } 
   
 
  
    
      
        
          
            
              
                1 
                + 
                
                  cot 
                  
                    2 
                   
                 
                 
                θ 
                = 
                
                  csc 
                  
                    2 
                   
                 
                 
                θ 
               
             
            
              
                1 
                + 
                
                  tan 
                  
                    2 
                   
                 
                 
                θ 
                = 
                
                  sec 
                  
                    2 
                   
                 
                 
                θ 
               
             
            
              
                
                  sec 
                  
                    2 
                   
                 
                 
                θ 
                + 
                
                  csc 
                  
                    2 
                   
                 
                 
                θ 
                = 
                
                  sec 
                  
                    2 
                   
                 
                 
                θ 
                
                  csc 
                  
                    2 
                   
                 
                 
                θ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&1+\cot ^{2}\theta =\csc ^{2}\theta \\&1+\tan ^{2}\theta =\sec ^{2}\theta \\&\sec ^{2}\theta +\csc ^{2}\theta =\sec ^{2}\theta \csc ^{2}\theta \end{aligned}}} 
   
 
Using these identities, it is possible to express any trigonometric function in terms of any other (up to  a plus or minus sign):
Each trigonometric function in terms of each of the other five.[ 1]  
in terms of
 
  
    
      
        sin 
         
        θ 
       
     
    {\displaystyle \sin \theta } 
   
 
  
    
      
        csc 
         
        θ 
       
     
    {\displaystyle \csc \theta } 
   
 
  
    
      
        cos 
         
        θ 
       
     
    {\displaystyle \cos \theta } 
   
 
  
    
      
        sec 
         
        θ 
       
     
    {\displaystyle \sec \theta } 
   
 
  
    
      
        tan 
         
        θ 
       
     
    {\displaystyle \tan \theta } 
   
 
  
    
      
        cot 
         
        θ 
       
     
    {\displaystyle \cot \theta } 
   
  
  
    
      
        sin 
         
        θ 
        = 
       
     
    {\displaystyle \sin \theta =} 
   
 
  
    
      
        sin 
         
        θ 
       
     
    {\displaystyle \sin \theta } 
   
 
  
    
      
        
          
            1 
            
              csc 
               
              θ 
             
           
         
       
     
    {\displaystyle {\frac {1}{\csc \theta }}} 
   
 
  
    
      
        ± 
        
          
            1 
            − 
            
              cos 
              
                2 
               
             
             
            θ 
           
         
       
     
    {\displaystyle \pm {\sqrt {1-\cos ^{2}\theta }}} 
   
 
  
    
      
        ± 
        
          
            
              
                sec 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
            
              sec 
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sqrt {\sec ^{2}\theta -1}}{\sec \theta }}} 
   
 
  
    
      
        ± 
        
          
            
              tan 
               
              θ 
             
            
              1 
              + 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\tan \theta }{\sqrt {1+\tan ^{2}\theta }}}} 
   
 
  
    
      
        ± 
        
          
            1 
            
              1 
              + 
              
                cot 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {1}{\sqrt {1+\cot ^{2}\theta }}}} 
   
  
  
    
      
        csc 
         
        θ 
        = 
       
     
    {\displaystyle \csc \theta =} 
   
 
  
    
      
        
          
            1 
            
              sin 
               
              θ 
             
           
         
       
     
    {\displaystyle {\frac {1}{\sin \theta }}} 
   
 
  
    
      
        csc 
         
        θ 
       
     
    {\displaystyle \csc \theta } 
   
 
  
    
      
        ± 
        
          
            1 
            
              1 
              − 
              
                cos 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {1}{\sqrt {1-\cos ^{2}\theta }}}} 
   
 
  
    
      
        ± 
        
          
            
              sec 
               
              θ 
             
            
              
                sec 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sec \theta }{\sqrt {\sec ^{2}\theta -1}}}} 
   
 
  
    
      
        ± 
        
          
            
              1 
              + 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
            
              tan 
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sqrt {1+\tan ^{2}\theta }}{\tan \theta }}} 
   
 
  
    
      
        ± 
        
          
            1 
            + 
            
              cot 
              
                2 
               
             
             
            θ 
           
         
       
     
    {\displaystyle \pm {\sqrt {1+\cot ^{2}\theta }}} 
   
  
  
    
      
        cos 
         
        θ 
        = 
       
     
    {\displaystyle \cos \theta =} 
   
 
  
    
      
        ± 
        
          
            1 
            − 
            
              sin 
              
                2 
               
             
             
            θ 
           
         
       
     
    {\displaystyle \pm {\sqrt {1-\sin ^{2}\theta }}} 
   
 
  
    
      
        ± 
        
          
            
              
                csc 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
            
              csc 
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sqrt {\csc ^{2}\theta -1}}{\csc \theta }}} 
   
 
  
    
      
        cos 
         
        θ 
       
     
    {\displaystyle \cos \theta } 
   
 
  
    
      
        
          
            1 
            
              sec 
               
              θ 
             
           
         
       
     
    {\displaystyle {\frac {1}{\sec \theta }}} 
   
 
  
    
      
        ± 
        
          
            1 
            
              1 
              + 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {1}{\sqrt {1+\tan ^{2}\theta }}}} 
   
 
  
    
      
        ± 
        
          
            
              cot 
               
              θ 
             
            
              1 
              + 
              
                cot 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\cot \theta }{\sqrt {1+\cot ^{2}\theta }}}} 
   
  
  
    
      
        sec 
         
        θ 
        = 
       
     
    {\displaystyle \sec \theta =} 
   
 
  
    
      
        ± 
        
          
            1 
            
              1 
              − 
              
                sin 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {1}{\sqrt {1-\sin ^{2}\theta }}}} 
   
 
  
    
      
        ± 
        
          
            
              csc 
               
              θ 
             
            
              
                csc 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
           
         
       
     
    {\displaystyle \pm {\frac {\csc \theta }{\sqrt {\csc ^{2}\theta -1}}}} 
   
 
  
    
      
        
          
            1 
            
              cos 
               
              θ 
             
           
         
       
     
    {\displaystyle {\frac {1}{\cos \theta }}} 
   
 
  
    
      
        sec 
         
        θ 
       
     
    {\displaystyle \sec \theta } 
   
 
  
    
      
        ± 
        
          
            1 
            + 
            
              tan 
              
                2 
               
             
             
            θ 
           
         
       
     
    {\displaystyle \pm {\sqrt {1+\tan ^{2}\theta }}} 
   
 
  
    
      
        ± 
        
          
            
              1 
              + 
              
                cot 
                
                  2 
                 
               
               
              θ 
             
            
              cot 
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sqrt {1+\cot ^{2}\theta }}{\cot \theta }}} 
   
  
  
    
      
        tan 
         
        θ 
        = 
       
     
    {\displaystyle \tan \theta =} 
   
 
  
    
      
        ± 
        
          
            
              sin 
               
              θ 
             
            
              1 
              − 
              
                sin 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sin \theta }{\sqrt {1-\sin ^{2}\theta }}}} 
   
 
  
    
      
        ± 
        
          
            1 
            
              
                csc 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
           
         
       
     
    {\displaystyle \pm {\frac {1}{\sqrt {\csc ^{2}\theta -1}}}} 
   
 
  
    
      
        ± 
        
          
            
              1 
              − 
              
                cos 
                
                  2 
                 
               
               
              θ 
             
            
              cos 
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sqrt {1-\cos ^{2}\theta }}{\cos \theta }}} 
   
 
  
    
      
        ± 
        
          
            
              sec 
              
                2 
               
             
             
            θ 
            − 
            1 
           
         
       
     
    {\displaystyle \pm {\sqrt {\sec ^{2}\theta -1}}} 
   
 
  
    
      
        tan 
         
        θ 
       
     
    {\displaystyle \tan \theta } 
   
 
  
    
      
        
          
            1 
            
              cot 
               
              θ 
             
           
         
       
     
    {\displaystyle {\frac {1}{\cot \theta }}} 
   
  
  
    
      
        cot 
         
        θ 
        = 
       
     
    {\displaystyle \cot \theta =} 
   
 
  
    
      
        ± 
        
          
            
              1 
              − 
              
                sin 
                
                  2 
                 
               
               
              θ 
             
            
              sin 
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\sqrt {1-\sin ^{2}\theta }}{\sin \theta }}} 
   
 
  
    
      
        ± 
        
          
            
              csc 
              
                2 
               
             
             
            θ 
            − 
            1 
           
         
       
     
    {\displaystyle \pm {\sqrt {\csc ^{2}\theta -1}}} 
   
 
  
    
      
        ± 
        
          
            
              cos 
               
              θ 
             
            
              1 
              − 
              
                cos 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \pm {\frac {\cos \theta }{\sqrt {1-\cos ^{2}\theta }}}} 
   
 
  
    
      
        ± 
        
          
            1 
            
              
                sec 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
           
         
       
     
    {\displaystyle \pm {\frac {1}{\sqrt {\sec ^{2}\theta -1}}}} 
   
 
  
    
      
        
          
            1 
            
              tan 
               
              θ 
             
           
         
       
     
    {\displaystyle {\frac {1}{\tan \theta }}} 
   
 
  
    
      
        cot 
         
        θ 
       
     
    {\displaystyle \cot \theta } 
   
  
By examining the unit circle, one can establish the following properties of the trigonometric functions.
Reflections 
Transformation of coordinates (a ,b ) when shifting the reflection angle 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        
          
            π 
            4 
           
         
       
     
    {\displaystyle {\frac {\pi }{4}}} 
   
  When the direction of a Euclidean vector  is represented by an angle 
  
    
      
        θ 
        , 
       
     
    {\displaystyle \theta ,} 
   
 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 Euclidean space , where the angle is that determined by a parallel to the given line through the origin and the positive 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        α 
        , 
       
     
    {\displaystyle \alpha ,} 
   
 
  
    
      
        
          θ 
          
            ′ 
           
         
       
     
    {\displaystyle \theta ^{\prime }} 
   
 
  
    
      
        
          θ 
          
            ′ 
           
         
        = 
        2 
        α 
        − 
        θ 
        . 
       
     
    {\displaystyle \theta ^{\prime }=2\alpha -\theta .} 
   
 
The values of the trigonometric functions of these angles 
  
    
      
        θ 
        , 
        
          θ 
          
            ′ 
           
         
       
     
    {\displaystyle \theta ,\;\theta ^{\prime }} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 reduction formulae .[ 2] 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        α 
        = 
        0 
       
     
    {\displaystyle \alpha =0} 
   
 [ 3] odd/even  identities
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        α 
        = 
        
          
            π 
            4 
           
         
       
     
    {\displaystyle \alpha ={\frac {\pi }{4}}} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        α 
        = 
        
          
            π 
            2 
           
         
       
     
    {\displaystyle \alpha ={\frac {\pi }{2}}} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        α 
        = 
        
          
            
              3 
              π 
             
            4 
           
         
       
     
    {\displaystyle \alpha ={\frac {3\pi }{4}}} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        α 
        = 
        π 
       
     
    {\displaystyle \alpha =\pi } 
   
 compare to 
  
    
      
        α 
        = 
        0 
       
     
    {\displaystyle \alpha =0} 
   
  
 
  
    
      
        sin 
         
        ( 
        − 
        θ 
        ) 
        = 
        − 
        sin 
         
        θ 
       
     
    {\displaystyle \sin(-\theta )=-\sin \theta } 
   
 
  
    
      
        sin 
         
        
          ( 
          
            
              
                
                  π 
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        cos 
         
        θ 
       
     
    {\displaystyle \sin \left({\tfrac {\pi }{2}}-\theta \right)=\cos \theta } 
   
 
  
    
      
        sin 
         
        ( 
        π 
        − 
        θ 
        ) 
        = 
        + 
        sin 
         
        θ 
       
     
    {\displaystyle \sin(\pi -\theta )=+\sin \theta } 
   
 
  
    
      
        sin 
         
        
          ( 
          
            
              
                
                  
                    3 
                    π 
                   
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        − 
        cos 
         
        θ 
       
     
    {\displaystyle \sin \left({\tfrac {3\pi }{2}}-\theta \right)=-\cos \theta } 
   
 
  
    
      
        sin 
         
        ( 
        2 
        π 
        − 
        θ 
        ) 
        = 
        − 
        sin 
         
        ( 
        θ 
        ) 
        = 
        sin 
         
        ( 
        − 
        θ 
        ) 
       
     
    {\displaystyle \sin(2\pi -\theta )=-\sin(\theta )=\sin(-\theta )} 
   
  
  
    
      
        cos 
         
        ( 
        − 
        θ 
        ) 
        = 
        + 
        cos 
         
        θ 
       
     
    {\displaystyle \cos(-\theta )=+\cos \theta } 
   
 
  
    
      
        cos 
         
        
          ( 
          
            
              
                
                  π 
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        sin 
         
        θ 
       
     
    {\displaystyle \cos \left({\tfrac {\pi }{2}}-\theta \right)=\sin \theta } 
   
 
  
    
      
        cos 
         
        ( 
        π 
        − 
        θ 
        ) 
        = 
        − 
        cos 
         
        θ 
       
     
    {\displaystyle \cos(\pi -\theta )=-\cos \theta } 
   
 
  
    
      
        cos 
         
        
          ( 
          
            
              
                
                  
                    3 
                    π 
                   
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        − 
        sin 
         
        θ 
       
     
    {\displaystyle \cos \left({\tfrac {3\pi }{2}}-\theta \right)=-\sin \theta } 
   
 
  
    
      
        cos 
         
        ( 
        2 
        π 
        − 
        θ 
        ) 
        = 
        + 
        cos 
         
        ( 
        θ 
        ) 
        = 
        cos 
         
        ( 
        − 
        θ 
        ) 
       
     
    {\displaystyle \cos(2\pi -\theta )=+\cos(\theta )=\cos(-\theta )} 
   
  
  
    
      
        tan 
         
        ( 
        − 
        θ 
        ) 
        = 
        − 
        tan 
         
        θ 
       
     
    {\displaystyle \tan(-\theta )=-\tan \theta } 
   
 
  
    
      
        tan 
         
        
          ( 
          
            
              
                
                  π 
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        cot 
         
        θ 
       
     
    {\displaystyle \tan \left({\tfrac {\pi }{2}}-\theta \right)=\cot \theta } 
   
 
  
    
      
        tan 
         
        ( 
        π 
        − 
        θ 
        ) 
        = 
        − 
        tan 
         
        θ 
       
     
    {\displaystyle \tan(\pi -\theta )=-\tan \theta } 
   
 
  
    
      
        tan 
         
        
          ( 
          
            
              
                
                  
                    3 
                    π 
                   
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        + 
        cot 
         
        θ 
       
     
    {\displaystyle \tan \left({\tfrac {3\pi }{2}}-\theta \right)=+\cot \theta } 
   
 
  
    
      
        tan 
         
        ( 
        2 
        π 
        − 
        θ 
        ) 
        = 
        − 
        tan 
         
        ( 
        θ 
        ) 
        = 
        tan 
         
        ( 
        − 
        θ 
        ) 
       
     
    {\displaystyle \tan(2\pi -\theta )=-\tan(\theta )=\tan(-\theta )} 
   
  
  
    
      
        csc 
         
        ( 
        − 
        θ 
        ) 
        = 
        − 
        csc 
         
        θ 
       
     
    {\displaystyle \csc(-\theta )=-\csc \theta } 
   
 
  
    
      
        csc 
         
        
          ( 
          
            
              
                
                  π 
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        sec 
         
        θ 
       
     
    {\displaystyle \csc \left({\tfrac {\pi }{2}}-\theta \right)=\sec \theta } 
   
 
  
    
      
        csc 
         
        ( 
        π 
        − 
        θ 
        ) 
        = 
        + 
        csc 
         
        θ 
       
     
    {\displaystyle \csc(\pi -\theta )=+\csc \theta } 
   
 
  
    
      
        csc 
         
        
          ( 
          
            
              
                
                  
                    3 
                    π 
                   
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        − 
        sec 
         
        θ 
       
     
    {\displaystyle \csc \left({\tfrac {3\pi }{2}}-\theta \right)=-\sec \theta } 
   
 
  
    
      
        csc 
         
        ( 
        2 
        π 
        − 
        θ 
        ) 
        = 
        − 
        csc 
         
        ( 
        θ 
        ) 
        = 
        csc 
         
        ( 
        − 
        θ 
        ) 
       
     
    {\displaystyle \csc(2\pi -\theta )=-\csc(\theta )=\csc(-\theta )} 
   
  
  
    
      
        sec 
         
        ( 
        − 
        θ 
        ) 
        = 
        + 
        sec 
         
        θ 
       
     
    {\displaystyle \sec(-\theta )=+\sec \theta } 
   
 
  
    
      
        sec 
         
        
          ( 
          
            
              
                
                  π 
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        csc 
         
        θ 
       
     
    {\displaystyle \sec \left({\tfrac {\pi }{2}}-\theta \right)=\csc \theta } 
   
 
  
    
      
        sec 
         
        ( 
        π 
        − 
        θ 
        ) 
        = 
        − 
        sec 
         
        θ 
       
     
    {\displaystyle \sec(\pi -\theta )=-\sec \theta } 
   
 
  
    
      
        sec 
         
        
          ( 
          
            
              
                
                  
                    3 
                    π 
                   
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        − 
        csc 
         
        θ 
       
     
    {\displaystyle \sec \left({\tfrac {3\pi }{2}}-\theta \right)=-\csc \theta } 
   
 
  
    
      
        sec 
         
        ( 
        2 
        π 
        − 
        θ 
        ) 
        = 
        + 
        sec 
         
        ( 
        θ 
        ) 
        = 
        sec 
         
        ( 
        − 
        θ 
        ) 
       
     
    {\displaystyle \sec(2\pi -\theta )=+\sec(\theta )=\sec(-\theta )} 
   
  
  
    
      
        cot 
         
        ( 
        − 
        θ 
        ) 
        = 
        − 
        cot 
         
        θ 
       
     
    {\displaystyle \cot(-\theta )=-\cot \theta } 
   
 
  
    
      
        cot 
         
        
          ( 
          
            
              
                
                  π 
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        tan 
         
        θ 
       
     
    {\displaystyle \cot \left({\tfrac {\pi }{2}}-\theta \right)=\tan \theta } 
   
 
  
    
      
        cot 
         
        ( 
        π 
        − 
        θ 
        ) 
        = 
        − 
        cot 
         
        θ 
       
     
    {\displaystyle \cot(\pi -\theta )=-\cot \theta } 
   
 
  
    
      
        cot 
         
        
          ( 
          
            
              
                
                  
                    3 
                    π 
                   
                  2 
                 
               
             
            − 
            θ 
           
          ) 
         
        = 
        + 
        tan 
         
        θ 
       
     
    {\displaystyle \cot \left({\tfrac {3\pi }{2}}-\theta \right)=+\tan \theta } 
   
 
  
    
      
        cot 
         
        ( 
        2 
        π 
        − 
        θ 
        ) 
        = 
        − 
        cot 
         
        ( 
        θ 
        ) 
        = 
        cot 
         
        ( 
        − 
        θ 
        ) 
       
     
    {\displaystyle \cot(2\pi -\theta )=-\cot(\theta )=\cot(-\theta )} 
   
  
Shifts and periodicity 
Transformation of coordinates (a ,b ) when shifting the angle 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        
          
            π 
            2 
           
         
       
     
    {\displaystyle {\frac {\pi }{2}}} 
   
  
Shift by one quarter period
 
Shift by one half period
 
Shift by full periods[ 4]  
Period
  
  
    
      
        sin 
         
        ( 
        θ 
        ± 
        
          
            
              π 
              2 
             
           
         
        ) 
        = 
        ± 
        cos 
         
        θ 
       
     
    {\displaystyle \sin(\theta \pm {\tfrac {\pi }{2}})=\pm \cos \theta } 
   
 
  
    
      
        sin 
         
        ( 
        θ 
        + 
        π 
        ) 
        = 
        − 
        sin 
         
        θ 
       
     
    {\displaystyle \sin(\theta +\pi )=-\sin \theta } 
   
 
  
    
      
        sin 
         
        ( 
        θ 
        + 
        k 
        ⋅ 
        2 
        π 
        ) 
        = 
        + 
        sin 
         
        θ 
       
     
    {\displaystyle \sin(\theta +k\cdot 2\pi )=+\sin \theta } 
   
 
  
    
      
        2 
        π 
       
     
    {\displaystyle 2\pi } 
   
  
  
    
      
        cos 
         
        ( 
        θ 
        ± 
        
          
            
              π 
              2 
             
           
         
        ) 
        = 
        ∓ 
        sin 
         
        θ 
       
     
    {\displaystyle \cos(\theta \pm {\tfrac {\pi }{2}})=\mp \sin \theta } 
   
 
  
    
      
        cos 
         
        ( 
        θ 
        + 
        π 
        ) 
        = 
        − 
        cos 
         
        θ 
       
     
    {\displaystyle \cos(\theta +\pi )=-\cos \theta } 
   
 
  
    
      
        cos 
         
        ( 
        θ 
        + 
        k 
        ⋅ 
        2 
        π 
        ) 
        = 
        + 
        cos 
         
        θ 
       
     
    {\displaystyle \cos(\theta +k\cdot 2\pi )=+\cos \theta } 
   
 
  
    
      
        2 
        π 
       
     
    {\displaystyle 2\pi } 
   
  
  
    
      
        csc 
         
        ( 
        θ 
        ± 
        
          
            
              π 
              2 
             
           
         
        ) 
        = 
        ± 
        sec 
         
        θ 
       
     
    {\displaystyle \csc(\theta \pm {\tfrac {\pi }{2}})=\pm \sec \theta } 
   
 
  
    
      
        csc 
         
        ( 
        θ 
        + 
        π 
        ) 
        = 
        − 
        csc 
         
        θ 
       
     
    {\displaystyle \csc(\theta +\pi )=-\csc \theta } 
   
 
  
    
      
        csc 
         
        ( 
        θ 
        + 
        k 
        ⋅ 
        2 
        π 
        ) 
        = 
        + 
        csc 
         
        θ 
       
     
    {\displaystyle \csc(\theta +k\cdot 2\pi )=+\csc \theta } 
   
 
  
    
      
        2 
        π 
       
     
    {\displaystyle 2\pi } 
   
  
  
    
      
        sec 
         
        ( 
        θ 
        ± 
        
          
            
              π 
              2 
             
           
         
        ) 
        = 
        ∓ 
        csc 
         
        θ 
       
     
    {\displaystyle \sec(\theta \pm {\tfrac {\pi }{2}})=\mp \csc \theta } 
   
 
  
    
      
        sec 
         
        ( 
        θ 
        + 
        π 
        ) 
        = 
        − 
        sec 
         
        θ 
       
     
    {\displaystyle \sec(\theta +\pi )=-\sec \theta } 
   
 
  
    
      
        sec 
         
        ( 
        θ 
        + 
        k 
        ⋅ 
        2 
        π 
        ) 
        = 
        + 
        sec 
         
        θ 
       
     
    {\displaystyle \sec(\theta +k\cdot 2\pi )=+\sec \theta } 
   
 
  
    
      
        2 
        π 
       
     
    {\displaystyle 2\pi } 
   
  
  
    
      
        tan 
         
        ( 
        θ 
        ± 
        
          
            
              π 
              4 
             
           
         
        ) 
        = 
        
          
            
              
                tan 
                 
                θ 
                ± 
                1 
               
              
                1 
                ∓ 
                tan 
                 
                θ 
               
             
           
         
       
     
    {\displaystyle \tan(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\tan \theta \pm 1}{1\mp \tan \theta }}} 
   
 
  
    
      
        tan 
         
        ( 
        θ 
        + 
        
          
            
              π 
              2 
             
           
         
        ) 
        = 
        − 
        cot 
         
        θ 
       
     
    {\displaystyle \tan(\theta +{\tfrac {\pi }{2}})=-\cot \theta } 
   
 
  
    
      
        tan 
         
        ( 
        θ 
        + 
        k 
        ⋅ 
        π 
        ) 
        = 
        + 
        tan 
         
        θ 
       
     
    {\displaystyle \tan(\theta +k\cdot \pi )=+\tan \theta } 
   
 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
  
  
    
      
        cot 
         
        ( 
        θ 
        ± 
        
          
            
              π 
              4 
             
           
         
        ) 
        = 
        
          
            
              
                cot 
                 
                θ 
                ∓ 
                1 
               
              
                1 
                ± 
                cot 
                 
                θ 
               
             
           
         
       
     
    {\displaystyle \cot(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\cot \theta \mp 1}{1\pm \cot \theta }}} 
   
 
  
    
      
        cot 
         
        ( 
        θ 
        + 
        
          
            
              π 
              2 
             
           
         
        ) 
        = 
        − 
        tan 
         
        θ 
       
     
    {\displaystyle \cot(\theta +{\tfrac {\pi }{2}})=-\tan \theta } 
   
 
  
    
      
        cot 
         
        ( 
        θ 
        + 
        k 
        ⋅ 
        π 
        ) 
        = 
        + 
        cot 
         
        θ 
       
     
    {\displaystyle \cot(\theta +k\cdot \pi )=+\cot \theta } 
   
 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
  
Signs 
The sign of trigonometric functions depends on quadrant of the angle. If 
  
    
      
        
          − 
          π 
         
        < 
        θ 
        ≤ 
        π 
       
     
    {\displaystyle {-\pi }<\theta \leq \pi } 
   
 sgn  is the sign function ,
  
    
      
        
          
            
              
                sgn 
                 
                ( 
                sin 
                 
                θ 
                ) 
                = 
                sgn 
                 
                ( 
                csc 
                 
                θ 
                ) 
               
              
                = 
                
                  
                    { 
                    
                      
                        
                          + 
                          1 
                         
                        
                          
                            if 
                           
                            
                            
                          0 
                          < 
                          θ 
                          < 
                          π 
                         
                       
                      
                        
                          − 
                          1 
                         
                        
                          
                            if 
                           
                            
                            
                          
                            − 
                            π 
                           
                          < 
                          θ 
                          < 
                          0 
                         
                       
                      
                        
                          0 
                         
                        
                          
                            if 
                           
                            
                            
                          θ 
                          ∈ 
                          { 
                          0 
                          , 
                          π 
                          } 
                         
                       
                     
                     
                 
               
             
            
              
                sgn 
                 
                ( 
                cos 
                 
                θ 
                ) 
                = 
                sgn 
                 
                ( 
                sec 
                 
                θ 
                ) 
               
              
                = 
                
                  
                    { 
                    
                      
                        
                          + 
                          1 
                         
                        
                          
                            if 
                           
                            
                            
                          
                            − 
                            
                              
                                
                                  1 
                                  2 
                                 
                               
                             
                            π 
                           
                          < 
                          θ 
                          < 
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                         
                       
                      
                        
                          − 
                          1 
                         
                        
                          
                            if 
                           
                            
                            
                          
                            − 
                            π 
                           
                          < 
                          θ 
                          < 
                          − 
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                            
                            
                          
                            or 
                           
                            
                            
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                          < 
                          θ 
                          < 
                          π 
                         
                       
                      
                        
                          0 
                         
                        
                          
                            if 
                           
                            
                            
                          θ 
                          ∈ 
                          
                            
                              { 
                             
                           
                          
                            − 
                            
                              
                                
                                  1 
                                  2 
                                 
                               
                             
                            π 
                           
                          , 
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                          
                            
                              } 
                             
                           
                         
                       
                     
                     
                 
               
             
            
              
                sgn 
                 
                ( 
                tan 
                 
                θ 
                ) 
                = 
                sgn 
                 
                ( 
                cot 
                 
                θ 
                ) 
               
              
                = 
                
                  
                    { 
                    
                      
                        
                          + 
                          1 
                         
                        
                          
                            if 
                           
                            
                            
                          
                            − 
                            π 
                           
                          < 
                          θ 
                          < 
                          − 
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                            
                            
                          
                            or 
                           
                            
                            
                          0 
                          < 
                          θ 
                          < 
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                         
                       
                      
                        
                          − 
                          1 
                         
                        
                          
                            if 
                           
                            
                            
                          
                            − 
                            
                              
                                
                                  1 
                                  2 
                                 
                               
                             
                            π 
                           
                          < 
                          θ 
                          < 
                          0 
                            
                            
                          
                            or 
                           
                            
                            
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                          < 
                          θ 
                          < 
                          π 
                         
                       
                      
                        
                          0 
                         
                        
                          
                            if 
                           
                            
                            
                          θ 
                          ∈ 
                          
                            
                              { 
                             
                           
                          
                            − 
                            
                              
                                
                                  1 
                                  2 
                                 
                               
                             
                            π 
                           
                          , 
                          0 
                          , 
                          
                            
                              
                                1 
                                2 
                               
                             
                           
                          π 
                          , 
                          π 
                          
                            
                              } 
                             
                           
                         
                       
                     
                     
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {sgn}(\sin \theta )=\operatorname {sgn}(\csc \theta )&={\begin{cases}+1&{\text{if}}\ \ 0<\theta <\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <0\\0&{\text{if}}\ \ \theta \in \{0,\pi \}\end{cases}}\\[5mu]\operatorname {sgn}(\cos \theta )=\operatorname {sgn}(\sec \theta )&={\begin{cases}+1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },{\tfrac {1}{2}}\pi {\bigr \}}\end{cases}}\\[5mu]\operatorname {sgn}(\tan \theta )=\operatorname {sgn}(\cot \theta )&={\begin{cases}+1&{\text{if}}\ \ {-\pi }<\theta <-{\tfrac {1}{2}}\pi \ \ {\text{or}}\ \ 0<\theta <{\tfrac {1}{2}}\pi \\-1&{\text{if}}\ \ {-{\tfrac {1}{2}}\pi }<\theta <0\ \ {\text{or}}\ \ {\tfrac {1}{2}}\pi <\theta <\pi \\0&{\text{if}}\ \ \theta \in {\bigl \{}{-{\tfrac {1}{2}}\pi },0,{\tfrac {1}{2}}\pi ,\pi {\bigr \}}\end{cases}}\end{aligned}}} 
   
 
The trigonometric functions are periodic with common period 
  
    
      
        2 
        π 
        , 
       
     
    {\displaystyle 2\pi ,} 
   
 θ  outside the interval 
  
    
      
        ( 
        
          − 
          π 
         
        , 
        π 
        ] 
        , 
       
     
    {\displaystyle ({-\pi },\pi ],} 
   
 § Shifts and periodicity  above).
Angle sum and difference identities 
Geometric construction to derive angle sum trigonometric identities Diagram showing the angle difference identities for 
  
    
      
        sin 
         
        ( 
        α 
        − 
        β 
        ) 
       
     
    {\displaystyle \sin(\alpha -\beta )} 
   
 
  
    
      
        cos 
         
        ( 
        α 
        − 
        β 
        ) 
       
     
    {\displaystyle \cos(\alpha -\beta )} 
   
  These are also known as the angle addition and subtraction theorems  (or formulae ).
  
    
      
        
          
            
              
                sin 
                 
                ( 
                α 
                + 
                β 
                ) 
               
              
                = 
                sin 
                 
                α 
                cos 
                 
                β 
                + 
                cos 
                 
                α 
                sin 
                 
                β 
               
             
            
              
                sin 
                 
                ( 
                α 
                − 
                β 
                ) 
               
              
                = 
                sin 
                 
                α 
                cos 
                 
                β 
                − 
                cos 
                 
                α 
                sin 
                 
                β 
               
             
            
              
                cos 
                 
                ( 
                α 
                + 
                β 
                ) 
               
              
                = 
                cos 
                 
                α 
                cos 
                 
                β 
                − 
                sin 
                 
                α 
                sin 
                 
                β 
               
             
            
              
                cos 
                 
                ( 
                α 
                − 
                β 
                ) 
               
              
                = 
                cos 
                 
                α 
                cos 
                 
                β 
                + 
                sin 
                 
                α 
                sin 
                 
                β 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin(\alpha +\beta )&=\sin \alpha \cos \beta +\cos \alpha \sin \beta \\\sin(\alpha -\beta )&=\sin \alpha \cos \beta -\cos \alpha \sin \beta \\\cos(\alpha +\beta )&=\cos \alpha \cos \beta -\sin \alpha \sin \beta \\\cos(\alpha -\beta )&=\cos \alpha \cos \beta +\sin \alpha \sin \beta \end{aligned}}} 
   
 
The angle difference identities for 
  
    
      
        sin 
         
        ( 
        α 
        − 
        β 
        ) 
       
     
    {\displaystyle \sin(\alpha -\beta )} 
   
 
  
    
      
        cos 
         
        ( 
        α 
        − 
        β 
        ) 
       
     
    {\displaystyle \cos(\alpha -\beta )} 
   
 
  
    
      
        − 
        β 
       
     
    {\displaystyle -\beta } 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        sin 
         
        ( 
        − 
        β 
        ) 
        = 
        − 
        sin 
         
        ( 
        β 
        ) 
       
     
    {\displaystyle \sin(-\beta )=-\sin(\beta )} 
   
 
  
    
      
        cos 
         
        ( 
        − 
        β 
        ) 
        = 
        cos 
         
        ( 
        β 
        ) 
       
     
    {\displaystyle \cos(-\beta )=\cos(\beta )} 
   
 
These identities are summarized in the first two rows of the following table, which also includes sum and difference identities for the other trigonometric functions.
Sine
 
  
    
      
        sin 
         
        ( 
        α 
        ± 
        β 
        ) 
       
     
    {\displaystyle \sin(\alpha \pm \beta )} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        sin 
         
        α 
        cos 
         
        β 
        ± 
        cos 
         
        α 
        sin 
         
        β 
       
     
    {\displaystyle \sin \alpha \cos \beta \pm \cos \alpha \sin \beta } 
   
 [ 5] [ 6]  
Cosine
 
  
    
      
        cos 
         
        ( 
        α 
        ± 
        β 
        ) 
       
     
    {\displaystyle \cos(\alpha \pm \beta )} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        cos 
         
        α 
        cos 
         
        β 
        ∓ 
        sin 
         
        α 
        sin 
         
        β 
       
     
    {\displaystyle \cos \alpha \cos \beta \mp \sin \alpha \sin \beta } 
   
 [ 6] [ 7]  
Tangent
 
  
    
      
        tan 
         
        ( 
        α 
        ± 
        β 
        ) 
       
     
    {\displaystyle \tan(\alpha \pm \beta )} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        
          
            
              tan 
               
              α 
              ± 
              tan 
               
              β 
             
            
              1 
              ∓ 
              tan 
               
              α 
              tan 
               
              β 
             
           
         
       
     
    {\displaystyle {\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }}} 
   
 [ 6] [ 8]  
Cosecant
 
  
    
      
        csc 
         
        ( 
        α 
        ± 
        β 
        ) 
       
     
    {\displaystyle \csc(\alpha \pm \beta )} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        
          
            
              sec 
               
              α 
              sec 
               
              β 
              csc 
               
              α 
              csc 
               
              β 
             
            
              sec 
               
              α 
              csc 
               
              β 
              ± 
              csc 
               
              α 
              sec 
               
              β 
             
           
         
       
     
    {\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\sec \alpha \csc \beta \pm \csc \alpha \sec \beta }}} 
   
 [ 9]  
Secant
 
  
    
      
        sec 
         
        ( 
        α 
        ± 
        β 
        ) 
       
     
    {\displaystyle \sec(\alpha \pm \beta )} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        
          
            
              sec 
               
              α 
              sec 
               
              β 
              csc 
               
              α 
              csc 
               
              β 
             
            
              csc 
               
              α 
              csc 
               
              β 
              ∓ 
              sec 
               
              α 
              sec 
               
              β 
             
           
         
       
     
    {\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\csc \alpha \csc \beta \mp \sec \alpha \sec \beta }}} 
   
 [ 9]  
Cotangent
 
  
    
      
        cot 
         
        ( 
        α 
        ± 
        β 
        ) 
       
     
    {\displaystyle \cot(\alpha \pm \beta )} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        
          
            
              cot 
               
              α 
              cot 
               
              β 
              ∓ 
              1 
             
            
              cot 
               
              β 
              ± 
              cot 
               
              α 
             
           
         
       
     
    {\displaystyle {\frac {\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha }}} 
   
 [ 6] [ 10]  
Arcsine
 
  
    
      
        arcsin 
         
        x 
        ± 
        arcsin 
         
        y 
       
     
    {\displaystyle \arcsin x\pm \arcsin y} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        arcsin 
         
        
          ( 
          
            x 
            
              
                1 
                − 
                
                  y 
                  
                    2 
                   
                 
               
             
            ± 
            y 
            
              
                1 
                − 
                
                  x 
                  
                    2 
                   
                 
                
                  
                    
                      
                        y 
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}\pm y{\sqrt {1-x^{2}{\vphantom {y}}}}\right)} 
   
 [ 11]  
Arccosine
 
  
    
      
        arccos 
         
        x 
        ± 
        arccos 
         
        y 
       
     
    {\displaystyle \arccos x\pm \arccos y} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        arccos 
         
        
          ( 
          
            x 
            y 
            ∓ 
            
              
                
                  ( 
                  
                    1 
                    − 
                    
                      x 
                      
                        2 
                       
                     
                   
                  ) 
                 
                
                  ( 
                  
                    1 
                    − 
                    
                      y 
                      
                        2 
                       
                     
                   
                  ) 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \arccos \left(xy\mp {\sqrt {\left(1-x^{2}\right)\left(1-y^{2}\right)}}\right)} 
   
 [ 12]  
Arctangent
 
  
    
      
        arctan 
         
        x 
        ± 
        arctan 
         
        y 
       
     
    {\displaystyle \arctan x\pm \arctan y} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        arctan 
         
        
          ( 
          
            
              
                x 
                ± 
                y 
               
              
                1 
                ∓ 
                x 
                y 
               
             
           
          ) 
         
       
     
    {\displaystyle \arctan \left({\frac {x\pm y}{1\mp xy}}\right)} 
   
 [ 13]  
Arccotangent
 
  
    
      
        arccot 
         
        x 
        ± 
        arccot 
         
        y 
       
     
    {\displaystyle \operatorname {arccot} x\pm \operatorname {arccot} y} 
   
 
  
    
      
        = 
       
     
    {\displaystyle =} 
   
 
  
    
      
        arccot 
         
        
          ( 
          
            
              
                x 
                y 
                ∓ 
                1 
               
              
                y 
                ± 
                x 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arccot} \left({\frac {xy\mp 1}{y\pm x}}\right)} 
   
  
Sines and cosines of sums of infinitely many angles 
When the series 
  
    
      
        
          ∑ 
          
            i 
            = 
            1 
           
          
            ∞ 
           
         
        
          θ 
          
            i 
           
         
       
     
    {\textstyle \sum _{i=1}^{\infty }\theta _{i}} 
   
 converges absolutely  then
  
    
      
        
          
            
              
                
                  sin 
                 
                
                  
                    ( 
                   
                 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    
                      odd 
                     
                      
                    k 
                    ≥ 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    
                      
                        k 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  ∑ 
                  
                    
                      
                        
                          
                            A 
                            ⊆ 
                            { 
                            1 
                            , 
                            2 
                            , 
                            3 
                            , 
                            … 
                            } 
                           
                         
                        
                          
                            
                              | 
                              A 
                              | 
                             
                            = 
                            k 
                           
                         
                       
                     
                   
                 
                
                  
                    ( 
                   
                 
                
                  ∏ 
                  
                    i 
                    ∈ 
                    A 
                   
                 
                sin 
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  ∏ 
                  
                    i 
                    ∉ 
                    A 
                   
                 
                cos 
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
               
             
            
              
                
                  cos 
                 
                
                  
                    ( 
                   
                 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    
                      even 
                     
                      
                    k 
                    ≥ 
                    0 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    
                      k 
                      2 
                     
                   
                 
                
                  ∑ 
                  
                    
                      
                        
                          
                            A 
                            ⊆ 
                            { 
                            1 
                            , 
                            2 
                            , 
                            3 
                            , 
                            … 
                            } 
                           
                         
                        
                          
                            
                              | 
                              A 
                              | 
                             
                            = 
                            k 
                           
                         
                       
                     
                   
                 
                
                  
                    ( 
                   
                 
                
                  ∏ 
                  
                    i 
                    ∈ 
                    A 
                   
                 
                sin 
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  ∏ 
                  
                    i 
                    ∉ 
                    A 
                   
                 
                cos 
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\sin }{\biggl (}\sum _{i=1}^{\infty }\theta _{i}{\biggl )}&=\sum _{{\text{odd}}\ k\geq 1}(-1)^{\frac {k-1}{2}}\!\!\sum _{\begin{smallmatrix}A\subseteq \{\,1,2,3,\dots \,\}\\\left|A\right|=k\end{smallmatrix}}{\biggl (}\prod _{i\in A}\sin \theta _{i}\prod _{i\not \in A}\cos \theta _{i}{\biggr )}\\{\cos }{\biggl (}\sum _{i=1}^{\infty }\theta _{i}{\biggr )}&=\sum _{{\text{even}}\ k\geq 0}(-1)^{\frac {k}{2}}\,\sum _{\begin{smallmatrix}A\subseteq \{\,1,2,3,\dots \,\}\\\left|A\right|=k\end{smallmatrix}}{\biggl (}\prod _{i\in A}\sin \theta _{i}\prod _{i\not \in A}\cos \theta _{i}{\biggr )}.\end{aligned}}} 
   
 
Because the series 
  
    
      
        
          ∑ 
          
            i 
            = 
            1 
           
          
            ∞ 
           
         
        
          θ 
          
            i 
           
         
       
     
    {\textstyle \sum _{i=1}^{\infty }\theta _{i}} 
   
 
  
    
      
        
          lim 
          
            i 
            → 
            ∞ 
           
         
        
          θ 
          
            i 
           
         
        = 
        0 
        , 
       
     
    {\textstyle \lim _{i\to \infty }\theta _{i}=0,} 
   
 
  
    
      
        
          lim 
          
            i 
            → 
            ∞ 
           
         
        sin 
         
        
          θ 
          
            i 
           
         
        = 
        0 
        , 
       
     
    {\textstyle \lim _{i\to \infty }\sin \theta _{i}=0,} 
   
 
  
    
      
        
          lim 
          
            i 
            → 
            ∞ 
           
         
        cos 
         
        
          θ 
          
            i 
           
         
        = 
        1. 
       
     
    {\textstyle \lim _{i\to \infty }\cos \theta _{i}=1.} 
   
 cofinitely  many cosine factors.  Terms with infinitely many sine factors would necessarily be equal to zero.
When only finitely many of the angles 
  
    
      
        
          θ 
          
            i 
           
         
       
     
    {\displaystyle \theta _{i}} 
   
 
Tangents and cotangents of sums 
Let 
  
    
      
        
          e 
          
            k 
           
         
       
     
    {\displaystyle e_{k}} 
   
 
  
    
      
        k 
        = 
        0 
        , 
        1 
        , 
        2 
        , 
        3 
        , 
        … 
       
     
    {\displaystyle k=0,1,2,3,\ldots } 
   
 k th-degree elementary symmetric polynomial  in the variables
  
    
      
        
          x 
          
            i 
           
         
        = 
        tan 
         
        
          θ 
          
            i 
           
         
       
     
    {\displaystyle x_{i}=\tan \theta _{i}} 
   
 
  
    
      
        i 
        = 
        0 
        , 
        1 
        , 
        2 
        , 
        3 
        , 
        … 
        , 
       
     
    {\displaystyle i=0,1,2,3,\ldots ,} 
   
 
  
    
      
        
          
            
              
                
                  e 
                  
                    0 
                   
                 
               
              
                = 
                1 
               
             
            
              
                
                  e 
                  
                    1 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    i 
                   
                 
                
                  x 
                  
                    i 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    i 
                   
                 
                tan 
                 
                
                  θ 
                  
                    i 
                   
                 
               
             
            
              
                
                  e 
                  
                    2 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    i 
                    < 
                    j 
                   
                 
                
                  x 
                  
                    i 
                   
                 
                
                  x 
                  
                    j 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    i 
                    < 
                    j 
                   
                 
                tan 
                 
                
                  θ 
                  
                    i 
                   
                 
                tan 
                 
                
                  θ 
                  
                    j 
                   
                 
               
             
            
              
                
                  e 
                  
                    3 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    i 
                    < 
                    j 
                    < 
                    k 
                   
                 
                
                  x 
                  
                    i 
                   
                 
                
                  x 
                  
                    j 
                   
                 
                
                  x 
                  
                    k 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    i 
                    < 
                    j 
                    < 
                    k 
                   
                 
                tan 
                 
                
                  θ 
                  
                    i 
                   
                 
                tan 
                 
                
                  θ 
                  
                    j 
                   
                 
                tan 
                 
                
                  θ 
                  
                    k 
                   
                 
               
             
            
              
                  
                  
                ⋮ 
               
              
                  
                  
                ⋮ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}e_{0}&=1\\[6pt]e_{1}&=\sum _{i}x_{i}&&=\sum _{i}\tan \theta _{i}\\[6pt]e_{2}&=\sum _{i<j}x_{i}x_{j}&&=\sum _{i<j}\tan \theta _{i}\tan \theta _{j}\\[6pt]e_{3}&=\sum _{i<j<k}x_{i}x_{j}x_{k}&&=\sum _{i<j<k}\tan \theta _{i}\tan \theta _{j}\tan \theta _{k}\\&\ \ \vdots &&\ \ \vdots \end{aligned}}} 
   
 
Then
  
    
      
        tan 
         
        
          
            ( 
           
         
        
          ∑ 
          
            i 
           
         
        
          θ 
          
            i 
           
         
        
          
            ) 
           
         
        = 
        
          
            
              
                e 
                
                  1 
                 
               
              − 
              
                e 
                
                  3 
                 
               
              + 
              
                e 
                
                  5 
                 
               
              − 
              ⋯ 
             
            
              
                e 
                
                  0 
                 
               
              − 
              
                e 
                
                  2 
                 
               
              + 
              
                e 
                
                  4 
                 
               
              − 
              ⋯ 
             
           
         
        . 
       
     
    {\displaystyle \tan {\Bigl (}\sum _{i}\theta _{i}{\Bigr )}={\frac {e_{1}-e_{3}+e_{5}-\cdots }{e_{0}-e_{2}+e_{4}-\cdots }}.} 
   
 
  
    
      
        
          
            
              
                tan 
                 
                
                  
                    ( 
                   
                 
                
                  ∑ 
                  
                    i 
                   
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      
                        sin 
                       
                      
                        
                          ( 
                         
                       
                      
                        ∑ 
                        
                          i 
                         
                       
                      
                        θ 
                        
                          i 
                         
                       
                      
                        
                          ) 
                         
                       
                      
                        / 
                       
                      
                        ∏ 
                        
                          i 
                         
                       
                      cos 
                       
                      
                        θ 
                        
                          i 
                         
                       
                     
                    
                      
                        cos 
                       
                      
                        
                          ( 
                         
                       
                      
                        ∑ 
                        
                          i 
                         
                       
                      
                        θ 
                        
                          i 
                         
                       
                      
                        
                          ) 
                         
                       
                      
                        / 
                       
                      
                        ∏ 
                        
                          i 
                         
                       
                      cos 
                       
                      
                        θ 
                        
                          i 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        ∑ 
                        
                          
                            odd 
                           
                            
                          k 
                          ≥ 
                          1 
                         
                       
                      ( 
                      − 
                      1 
                      
                        ) 
                        
                          
                            
                              k 
                              − 
                              1 
                             
                            2 
                           
                         
                       
                      
                        ∑ 
                        
                          
                            
                              
                                
                                  A 
                                  ⊆ 
                                  { 
                                  1 
                                  , 
                                  2 
                                  , 
                                  3 
                                  , 
                                  … 
                                  } 
                                 
                               
                              
                                
                                  
                                    | 
                                    A 
                                    | 
                                   
                                  = 
                                  k 
                                 
                               
                             
                           
                         
                       
                      
                        ∏ 
                        
                          i 
                          ∈ 
                          A 
                         
                       
                      tan 
                       
                      
                        θ 
                        
                          i 
                         
                       
                     
                    
                      
                        ∑ 
                        
                          
                            even 
                           
                            
                          k 
                          ≥ 
                          0 
                         
                       
                        
                      ( 
                      − 
                      1 
                      
                        ) 
                        
                          
                            k 
                            2 
                           
                         
                       
                        
                        
                      
                        ∑ 
                        
                          
                            
                              
                                
                                  A 
                                  ⊆ 
                                  { 
                                  1 
                                  , 
                                  2 
                                  , 
                                  3 
                                  , 
                                  … 
                                  } 
                                 
                               
                              
                                
                                  
                                    | 
                                    A 
                                    | 
                                   
                                  = 
                                  k 
                                 
                               
                             
                           
                         
                       
                      
                        ∏ 
                        
                          i 
                          ∈ 
                          A 
                         
                       
                      tan 
                       
                      
                        θ 
                        
                          i 
                         
                       
                     
                   
                 
                = 
                
                  
                    
                      
                        e 
                        
                          1 
                         
                       
                      − 
                      
                        e 
                        
                          3 
                         
                       
                      + 
                      
                        e 
                        
                          5 
                         
                       
                      − 
                      ⋯ 
                     
                    
                      
                        e 
                        
                          0 
                         
                       
                      − 
                      
                        e 
                        
                          2 
                         
                       
                      + 
                      
                        e 
                        
                          4 
                         
                       
                      − 
                      ⋯ 
                     
                   
                 
               
             
            
              
                cot 
                 
                
                  
                    ( 
                   
                 
                
                  ∑ 
                  
                    i 
                   
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      
                        e 
                        
                          0 
                         
                       
                      − 
                      
                        e 
                        
                          2 
                         
                       
                      + 
                      
                        e 
                        
                          4 
                         
                       
                      − 
                      ⋯ 
                     
                    
                      
                        e 
                        
                          1 
                         
                       
                      − 
                      
                        e 
                        
                          3 
                         
                       
                      + 
                      
                        e 
                        
                          5 
                         
                       
                      − 
                      ⋯ 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tan {\Bigl (}\sum _{i}\theta _{i}{\Bigr )}&={\frac {{\sin }{\bigl (}\sum _{i}\theta _{i}{\bigr )}/\prod _{i}\cos \theta _{i}}{{\cos }{\bigl (}\sum _{i}\theta _{i}{\bigr )}/\prod _{i}\cos \theta _{i}}}\\[10pt]&={\frac {\displaystyle \sum _{{\text{odd}}\ k\geq 1}(-1)^{\frac {k-1}{2}}\sum _{\begin{smallmatrix}A\subseteq \{1,2,3,\dots \}\\\left|A\right|=k\end{smallmatrix}}\prod _{i\in A}\tan \theta _{i}}{\displaystyle \sum _{{\text{even}}\ k\geq 0}~(-1)^{\frac {k}{2}}~~\sum _{\begin{smallmatrix}A\subseteq \{1,2,3,\dots \}\\\left|A\right|=k\end{smallmatrix}}\prod _{i\in A}\tan \theta _{i}}}={\frac {e_{1}-e_{3}+e_{5}-\cdots }{e_{0}-e_{2}+e_{4}-\cdots }}\\[10pt]\cot {\Bigl (}\sum _{i}\theta _{i}{\Bigr )}&={\frac {e_{0}-e_{2}+e_{4}-\cdots }{e_{1}-e_{3}+e_{5}-\cdots }}\end{aligned}}} 
   
 
The number of terms on the right side depends on the number of terms on the left side.
For example:
  
    
      
        
          
            
              
                tan 
                 
                ( 
                
                  θ 
                  
                    1 
                   
                 
                + 
                
                  θ 
                  
                    2 
                   
                 
                ) 
               
              
                = 
                
                  
                    
                      e 
                      
                        1 
                       
                     
                    
                      
                        e 
                        
                          0 
                         
                       
                      − 
                      
                        e 
                        
                          2 
                         
                       
                     
                   
                 
                = 
                
                  
                    
                      
                        x 
                        
                          1 
                         
                       
                      + 
                      
                        x 
                        
                          2 
                         
                       
                     
                    
                      1 
                        
                      − 
                        
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
                = 
                
                  
                    
                      tan 
                       
                      
                        θ 
                        
                          1 
                         
                       
                      + 
                      tan 
                       
                      
                        θ 
                        
                          2 
                         
                       
                     
                    
                      1 
                        
                      − 
                        
                      tan 
                       
                      
                        θ 
                        
                          1 
                         
                       
                      tan 
                       
                      
                        θ 
                        
                          2 
                         
                       
                     
                   
                 
                , 
               
             
            
              
                tan 
                 
                ( 
                
                  θ 
                  
                    1 
                   
                 
                + 
                
                  θ 
                  
                    2 
                   
                 
                + 
                
                  θ 
                  
                    3 
                   
                 
                ) 
               
              
                = 
                
                  
                    
                      
                        e 
                        
                          1 
                         
                       
                      − 
                      
                        e 
                        
                          3 
                         
                       
                     
                    
                      
                        e 
                        
                          0 
                         
                       
                      − 
                      
                        e 
                        
                          2 
                         
                       
                     
                   
                 
                = 
                
                  
                    
                      ( 
                      
                        x 
                        
                          1 
                         
                       
                      + 
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      
                        x 
                        
                          3 
                         
                       
                      ) 
                        
                      − 
                        
                      ( 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      ) 
                     
                    
                      1 
                        
                      − 
                        
                      ( 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      + 
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      ) 
                     
                   
                 
                , 
               
             
            
              
                tan 
                 
                ( 
                
                  θ 
                  
                    1 
                   
                 
                + 
                
                  θ 
                  
                    2 
                   
                 
                + 
                
                  θ 
                  
                    3 
                   
                 
                + 
                
                  θ 
                  
                    4 
                   
                 
                ) 
               
              
                = 
                
                  
                    
                      
                        e 
                        
                          1 
                         
                       
                      − 
                      
                        e 
                        
                          3 
                         
                       
                     
                    
                      
                        e 
                        
                          0 
                         
                       
                      − 
                      
                        e 
                        
                          2 
                         
                       
                      + 
                      
                        e 
                        
                          4 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      ( 
                      
                        x 
                        
                          1 
                         
                       
                      + 
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      
                        x 
                        
                          3 
                         
                       
                      + 
                      
                        x 
                        
                          4 
                         
                       
                      ) 
                        
                      − 
                        
                      ( 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      + 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          4 
                         
                       
                      + 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      
                        x 
                        
                          4 
                         
                       
                      + 
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      
                        x 
                        
                          4 
                         
                       
                      ) 
                     
                    
                      1 
                        
                      − 
                        
                      ( 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      + 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          4 
                         
                       
                      + 
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      + 
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          4 
                         
                       
                      + 
                      
                        x 
                        
                          3 
                         
                       
                      
                        x 
                        
                          4 
                         
                       
                      ) 
                        
                      + 
                        
                      ( 
                      
                        x 
                        
                          1 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                      
                        x 
                        
                          3 
                         
                       
                      
                        x 
                        
                          4 
                         
                       
                      ) 
                     
                   
                 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tan(\theta _{1}+\theta _{2})&={\frac {e_{1}}{e_{0}-e_{2}}}={\frac {x_{1}+x_{2}}{1\ -\ x_{1}x_{2}}}={\frac {\tan \theta _{1}+\tan \theta _{2}}{1\ -\ \tan \theta _{1}\tan \theta _{2}}},\\[8pt]\tan(\theta _{1}+\theta _{2}+\theta _{3})&={\frac {e_{1}-e_{3}}{e_{0}-e_{2}}}={\frac {(x_{1}+x_{2}+x_{3})\ -\ (x_{1}x_{2}x_{3})}{1\ -\ (x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3})}},\\[8pt]\tan(\theta _{1}+\theta _{2}+\theta _{3}+\theta _{4})&={\frac {e_{1}-e_{3}}{e_{0}-e_{2}+e_{4}}}\\[8pt]&={\frac {(x_{1}+x_{2}+x_{3}+x_{4})\ -\ (x_{1}x_{2}x_{3}+x_{1}x_{2}x_{4}+x_{1}x_{3}x_{4}+x_{2}x_{3}x_{4})}{1\ -\ (x_{1}x_{2}+x_{1}x_{3}+x_{1}x_{4}+x_{2}x_{3}+x_{2}x_{4}+x_{3}x_{4})\ +\ (x_{1}x_{2}x_{3}x_{4})}},\end{aligned}}} 
   
 
and so on. The case of only finitely many terms can be proved by mathematical induction .[ 14] [ 15] 
Suppose 
  
    
      
        a 
        , 
        b 
        , 
        c 
        , 
        d 
        , 
        p 
        , 
        q 
        ∈ 
        
          R 
         
       
     
    {\textstyle a,b,c,d,p,q\in \mathbb {R} } 
   
 
  
    
      
        i 
        = 
        
          
            − 
            1 
           
         
       
     
    {\textstyle i={\sqrt {-1}}} 
   
 
  
    
      
        
          
            
              a 
              i 
              + 
              b 
             
            
              c 
              i 
              + 
              d 
             
           
         
        = 
        p 
        i 
        + 
        q 
       
     
    {\displaystyle {\frac {ai+b}{ci+d}}=pi+q} 
   
 and let 
  
    
      
        φ 
       
     
    {\textstyle \varphi } 
   
 
  
    
      
        tan 
         
        φ 
        = 
        c 
        
          / 
         
        d 
        . 
       
     
    {\textstyle \tan \varphi =c/d.} 
   
 
  
    
      
        a 
        
          / 
         
        c 
        ≠ 
        b 
        
          / 
         
        d 
       
     
    {\textstyle a/c\neq b/d} 
   
 
  
    
      
        0 
        
          / 
         
        0 
       
     
    {\textstyle 0/0} 
   
 
  
    
      
        θ 
        ∈ 
        
          R 
         
       
     
    {\textstyle \theta \in \mathbb {R} } 
   
 [ 16] 
  
    
      
        
          
            
              a 
              tan 
               
              θ 
              + 
              b 
             
            
              c 
              tan 
               
              θ 
              + 
              d 
             
           
         
        = 
        p 
        tan 
         
        ( 
        θ 
        − 
        φ 
        ) 
        + 
        q 
        . 
       
     
    {\displaystyle {\frac {a\tan \theta +b}{c\tan \theta +d}}=p\tan(\theta -\varphi )+q.} 
   
 (In case the denominator of this fraction is 0, we take the value of the fraction to be 
  
    
      
        ∞ 
       
     
    {\textstyle \infty } 
   
 
  
    
      
        ∞ 
       
     
    {\textstyle \infty } 
   
 
  
    
      
        + 
        ∞ 
       
     
    {\textstyle +\infty } 
   
 
  
    
      
        − 
        ∞ 
       
     
    {\textstyle -\infty } 
   
 
  
    
      
        ∞ 
       
     
    {\textstyle \infty } 
   
 
  
    
      
        
          R 
         
        ∪ 
        { 
        ∞ 
        } 
       
     
    {\textstyle \mathbb {R} \cup \{\,\infty \,\}} 
   
 
From this identity it can be shown to follow quickly that the family of all Cauchy-distributed  random variables is closed under linear fractional tranformations, a result known since 1976.[ 17] 
Secants and cosecants of sums 
  
    
      
        
          
            
              
                
                  sec 
                 
                
                  
                    ( 
                   
                 
                
                  ∑ 
                  
                    i 
                   
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      
                        ∏ 
                        
                          i 
                         
                       
                      sec 
                       
                      
                        θ 
                        
                          i 
                         
                       
                     
                    
                      
                        e 
                        
                          0 
                         
                       
                      − 
                      
                        e 
                        
                          2 
                         
                       
                      + 
                      
                        e 
                        
                          4 
                         
                       
                      − 
                      ⋯ 
                     
                   
                 
               
             
            
              
                
                  csc 
                 
                
                  
                    ( 
                   
                 
                
                  ∑ 
                  
                    i 
                   
                 
                
                  θ 
                  
                    i 
                   
                 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      
                        ∏ 
                        
                          i 
                         
                       
                      sec 
                       
                      
                        θ 
                        
                          i 
                         
                       
                     
                    
                      
                        e 
                        
                          1 
                         
                       
                      − 
                      
                        e 
                        
                          3 
                         
                       
                      + 
                      
                        e 
                        
                          5 
                         
                       
                      − 
                      ⋯ 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\sec }{\Bigl (}\sum _{i}\theta _{i}{\Bigr )}&={\frac {\prod _{i}\sec \theta _{i}}{e_{0}-e_{2}+e_{4}-\cdots }}\\[8pt]{\csc }{\Bigl (}\sum _{i}\theta _{i}{\Bigr )}&={\frac {\prod _{i}\sec \theta _{i}}{e_{1}-e_{3}+e_{5}-\cdots }}\end{aligned}}} 
   
 
where 
  
    
      
        
          e 
          
            k 
           
         
       
     
    {\displaystyle e_{k}} 
   
 k th-degree elementary symmetric polynomial  in the n  variables 
  
    
      
        
          x 
          
            i 
           
         
        = 
        tan 
         
        
          θ 
          
            i 
           
         
        , 
       
     
    {\displaystyle x_{i}=\tan \theta _{i},} 
   
 
  
    
      
        i 
        = 
        1 
        , 
        … 
        , 
        n 
        , 
       
     
    {\displaystyle i=1,\ldots ,n,} 
   
 [ 18] 
For example,
  
    
      
        
          
            
              
                sec 
                 
                ( 
                α 
                + 
                β 
                + 
                γ 
                ) 
               
              
                = 
                
                  
                    
                      sec 
                       
                      α 
                      sec 
                       
                      β 
                      sec 
                       
                      γ 
                     
                    
                      1 
                      − 
                      tan 
                       
                      α 
                      tan 
                       
                      β 
                      − 
                      tan 
                       
                      α 
                      tan 
                       
                      γ 
                      − 
                      tan 
                       
                      β 
                      tan 
                       
                      γ 
                     
                   
                 
               
             
            
              
                csc 
                 
                ( 
                α 
                + 
                β 
                + 
                γ 
                ) 
               
              
                = 
                
                  
                    
                      sec 
                       
                      α 
                      sec 
                       
                      β 
                      sec 
                       
                      γ 
                     
                    
                      tan 
                       
                      α 
                      + 
                      tan 
                       
                      β 
                      + 
                      tan 
                       
                      γ 
                      − 
                      tan 
                       
                      α 
                      tan 
                       
                      β 
                      tan 
                       
                      γ 
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sec(\alpha +\beta +\gamma )&={\frac {\sec \alpha \sec \beta \sec \gamma }{1-\tan \alpha \tan \beta -\tan \alpha \tan \gamma -\tan \beta \tan \gamma }}\\[8pt]\csc(\alpha +\beta +\gamma )&={\frac {\sec \alpha \sec \beta \sec \gamma }{\tan \alpha +\tan \beta +\tan \gamma -\tan \alpha \tan \beta \tan \gamma }}.\end{aligned}}} 
   
 
Diagram illustrating the relation between Ptolemy's theorem and the angle sum trig identity for sine. Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α  + β ) = sin α  cos β  + cos α  sin β  . Ptolemy's theorem is important in the history of trigonometric identities, as it is how results equivalent to the sum and difference formulas for sine and cosine were first proved. It states that in a cyclic quadrilateral  
  
    
      
        A 
        B 
        C 
        D 
       
     
    {\displaystyle ABCD} 
   
 [ 19] 
By Thales's theorem , 
  
    
      
        ∠ 
        D 
        A 
        B 
       
     
    {\displaystyle \angle DAB} 
   
 
  
    
      
        ∠ 
        D 
        C 
        B 
       
     
    {\displaystyle \angle DCB} 
   
 
  
    
      
        D 
        A 
        B 
       
     
    {\displaystyle DAB} 
   
 
  
    
      
        D 
        C 
        B 
       
     
    {\displaystyle DCB} 
   
 
  
    
      
        
          
            
              B 
              D 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {BD}}} 
   
 
  
    
      
        
          
            
              A 
              B 
             
            ¯ 
           
         
        = 
        sin 
         
        α 
       
     
    {\displaystyle {\overline {AB}}=\sin \alpha } 
   
 
  
    
      
        
          
            
              A 
              D 
             
            ¯ 
           
         
        = 
        cos 
         
        α 
       
     
    {\displaystyle {\overline {AD}}=\cos \alpha } 
   
 
  
    
      
        
          
            
              B 
              C 
             
            ¯ 
           
         
        = 
        sin 
         
        β 
       
     
    {\displaystyle {\overline {BC}}=\sin \beta } 
   
 
  
    
      
        
          
            
              C 
              D 
             
            ¯ 
           
         
        = 
        cos 
         
        β 
       
     
    {\displaystyle {\overline {CD}}=\cos \beta } 
   
 
By the inscribed angle  theorem, the central angle  subtended by the chord 
  
    
      
        
          
            
              A 
              C 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AC}}} 
   
 
  
    
      
        ∠ 
        A 
        D 
        C 
       
     
    {\displaystyle \angle ADC} 
   
 
  
    
      
        2 
        ( 
        α 
        + 
        β 
        ) 
       
     
    {\displaystyle 2(\alpha +\beta )} 
   
 
  
    
      
        α 
        + 
        β 
       
     
    {\displaystyle \alpha +\beta } 
   
 
  
    
      
        
          
            1 
            2 
           
         
       
     
    {\textstyle {\frac {1}{2}}} 
   
 
  
    
      
        
          
            
              A 
              C 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AC}}} 
   
 
  
    
      
        2 
        × 
        
          
            1 
            2 
           
         
        sin 
         
        ( 
        α 
        + 
        β 
        ) 
       
     
    {\textstyle 2\times {\frac {1}{2}}\sin(\alpha +\beta )} 
   
 
  
    
      
        sin 
         
        ( 
        α 
        + 
        β 
        ) 
       
     
    {\displaystyle \sin(\alpha +\beta )} 
   
 
  
    
      
        sin 
         
        ( 
        α 
        + 
        β 
        ) 
       
     
    {\displaystyle \sin(\alpha +\beta )} 
   
 
When these values are substituted into the statement of Ptolemy's theorem that 
  
    
      
        
          | 
         
        
          
            
              A 
              C 
             
            ¯ 
           
         
        
          | 
         
        ⋅ 
        
          | 
         
        
          
            
              B 
              D 
             
            ¯ 
           
         
        
          | 
         
        = 
        
          | 
         
        
          
            
              A 
              B 
             
            ¯ 
           
         
        
          | 
         
        ⋅ 
        
          | 
         
        
          
            
              C 
              D 
             
            ¯ 
           
         
        
          | 
         
        + 
        
          | 
         
        
          
            
              A 
              D 
             
            ¯ 
           
         
        
          | 
         
        ⋅ 
        
          | 
         
        
          
            
              B 
              C 
             
            ¯ 
           
         
        
          | 
         
       
     
    {\displaystyle |{\overline {AC}}|\cdot |{\overline {BD}}|=|{\overline {AB}}|\cdot |{\overline {CD}}|+|{\overline {AD}}|\cdot |{\overline {BC}}|} 
   
 
  
    
      
        sin 
         
        ( 
        α 
        + 
        β 
        ) 
        = 
        sin 
         
        α 
        cos 
         
        β 
        + 
        cos 
         
        α 
        sin 
         
        β 
       
     
    {\displaystyle \sin(\alpha +\beta )=\sin \alpha \cos \beta +\cos \alpha \sin \beta } 
   
 
  
    
      
        sin 
         
        ( 
        α 
        − 
        β 
        ) 
       
     
    {\displaystyle \sin(\alpha -\beta )} 
   
 
  
    
      
        
          
            
              C 
              D 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {CD}}} 
   
 
  
    
      
        
          
            
              B 
              D 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {BD}}} 
   
 [ 19] 
Tn   is the n th Chebyshev polynomial 
  
    
      
        cos 
         
        ( 
        n 
        θ 
        ) 
        = 
        
          T 
          
            n 
           
         
        ( 
        cos 
         
        θ 
        ) 
       
     
    {\displaystyle \cos(n\theta )=T_{n}(\cos \theta )} 
   
 [ 20]  
de Moivre's formula , i  is the imaginary unit 
  
    
      
        cos 
         
        ( 
        n 
        θ 
        ) 
        + 
        i 
        sin 
         
        ( 
        n 
        θ 
        ) 
        = 
        ( 
        cos 
         
        θ 
        + 
        i 
        sin 
         
        θ 
        
          ) 
          
            n 
           
         
       
     
    {\displaystyle \cos(n\theta )+i\sin(n\theta )=(\cos \theta +i\sin \theta )^{n}} 
   
 [ 21]  
Visual demonstration of the double-angle formula for sine. For the above  isosceles triangle with unit sides and angle 
  
    
      
        2 
        θ 
       
     
    {\displaystyle 2\theta } 
   
 1 / 2   × base × height is calculated in two orientations. When upright, the area is 
  
    
      
        sin 
         
        θ 
        cos 
         
        θ 
       
     
    {\displaystyle \sin \theta \cos \theta } 
   
 
  
    
      
        
          
            1 
            2 
           
         
        sin 
         
        2 
        θ 
       
     
    {\textstyle {\frac {1}{2}}\sin 2\theta } 
   
 
  
    
      
        sin 
         
        2 
        θ 
        = 
        2 
        sin 
         
        θ 
        cos 
         
        θ 
        . 
       
     
    {\displaystyle \sin 2\theta =2\sin \theta \cos \theta .} 
   
  Formulae for twice an angle.[ 22] 
  
    
      
        sin 
         
        ( 
        2 
        θ 
        ) 
        = 
        2 
        sin 
         
        θ 
        cos 
         
        θ 
        = 
        ( 
        sin 
         
        θ 
        + 
        cos 
         
        θ 
        
          ) 
          
            2 
           
         
        − 
        1 
        = 
        
          
            
              2 
              tan 
               
              θ 
             
            
              1 
              + 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \sin(2\theta )=2\sin \theta \cos \theta =(\sin \theta +\cos \theta )^{2}-1={\frac {2\tan \theta }{1+\tan ^{2}\theta }}} 
   
 
  
    
      
        cos 
         
        ( 
        2 
        θ 
        ) 
        = 
        
          cos 
          
            2 
           
         
         
        θ 
        − 
        
          sin 
          
            2 
           
         
         
        θ 
        = 
        2 
        
          cos 
          
            2 
           
         
         
        θ 
        − 
        1 
        = 
        1 
        − 
        2 
        
          sin 
          
            2 
           
         
         
        θ 
        = 
        
          
            
              1 
              − 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
            
              1 
              + 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \cos(2\theta )=\cos ^{2}\theta -\sin ^{2}\theta =2\cos ^{2}\theta -1=1-2\sin ^{2}\theta ={\frac {1-\tan ^{2}\theta }{1+\tan ^{2}\theta }}} 
   
 
  
    
      
        tan 
         
        ( 
        2 
        θ 
        ) 
        = 
        
          
            
              2 
              tan 
               
              θ 
             
            
              1 
              − 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \tan(2\theta )={\frac {2\tan \theta }{1-\tan ^{2}\theta }}} 
   
 
  
    
      
        cot 
         
        ( 
        2 
        θ 
        ) 
        = 
        
          
            
              
                cot 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
            
              2 
              cot 
               
              θ 
             
           
         
        = 
        
          
            
              1 
              − 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
            
              2 
              tan 
               
              θ 
             
           
         
       
     
    {\displaystyle \cot(2\theta )={\frac {\cot ^{2}\theta -1}{2\cot \theta }}={\frac {1-\tan ^{2}\theta }{2\tan \theta }}} 
   
 
  
    
      
        sec 
         
        ( 
        2 
        θ 
        ) 
        = 
        
          
            
              
                sec 
                
                  2 
                 
               
               
              θ 
             
            
              2 
              − 
              
                sec 
                
                  2 
                 
               
               
              θ 
             
           
         
        = 
        
          
            
              1 
              + 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
            
              1 
              − 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \sec(2\theta )={\frac {\sec ^{2}\theta }{2-\sec ^{2}\theta }}={\frac {1+\tan ^{2}\theta }{1-\tan ^{2}\theta }}} 
   
 
  
    
      
        csc 
         
        ( 
        2 
        θ 
        ) 
        = 
        
          
            
              sec 
               
              θ 
              csc 
               
              θ 
             
            2 
           
         
        = 
        
          
            
              1 
              + 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
            
              2 
              tan 
               
              θ 
             
           
         
       
     
    {\displaystyle \csc(2\theta )={\frac {\sec \theta \csc \theta }{2}}={\frac {1+\tan ^{2}\theta }{2\tan \theta }}} 
   
  
Formulae for triple angles.[ 22] 
  
    
      
        sin 
         
        ( 
        3 
        θ 
        ) 
        = 
        3 
        sin 
         
        θ 
        − 
        4 
        
          sin 
          
            3 
           
         
         
        θ 
        = 
        4 
        sin 
         
        θ 
        sin 
         
        
          ( 
          
            
              
                π 
                3 
               
             
            − 
            θ 
           
          ) 
         
        sin 
         
        
          ( 
          
            
              
                π 
                3 
               
             
            + 
            θ 
           
          ) 
         
       
     
    {\displaystyle \sin(3\theta )=3\sin \theta -4\sin ^{3}\theta =4\sin \theta \sin \left({\frac {\pi }{3}}-\theta \right)\sin \left({\frac {\pi }{3}}+\theta \right)} 
   
 
  
    
      
        cos 
         
        ( 
        3 
        θ 
        ) 
        = 
        4 
        
          cos 
          
            3 
           
         
         
        θ 
        − 
        3 
        cos 
         
        θ 
        = 
        4 
        cos 
         
        θ 
        cos 
         
        
          ( 
          
            
              
                π 
                3 
               
             
            − 
            θ 
           
          ) 
         
        cos 
         
        
          ( 
          
            
              
                π 
                3 
               
             
            + 
            θ 
           
          ) 
         
       
     
    {\displaystyle \cos(3\theta )=4\cos ^{3}\theta -3\cos \theta =4\cos \theta \cos \left({\frac {\pi }{3}}-\theta \right)\cos \left({\frac {\pi }{3}}+\theta \right)} 
   
 
  
    
      
        tan 
         
        ( 
        3 
        θ 
        ) 
        = 
        
          
            
              3 
              tan 
               
              θ 
              − 
              
                tan 
                
                  3 
                 
               
               
              θ 
             
            
              1 
              − 
              3 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
        = 
        tan 
         
        θ 
        tan 
         
        
          ( 
          
            
              
                π 
                3 
               
             
            − 
            θ 
           
          ) 
         
        tan 
         
        
          ( 
          
            
              
                π 
                3 
               
             
            + 
            θ 
           
          ) 
         
       
     
    {\displaystyle \tan(3\theta )={\frac {3\tan \theta -\tan ^{3}\theta }{1-3\tan ^{2}\theta }}=\tan \theta \tan \left({\frac {\pi }{3}}-\theta \right)\tan \left({\frac {\pi }{3}}+\theta \right)} 
   
 
  
    
      
        cot 
         
        ( 
        3 
        θ 
        ) 
        = 
        
          
            
              3 
              cot 
               
              θ 
              − 
              
                cot 
                
                  3 
                 
               
               
              θ 
             
            
              1 
              − 
              3 
              
                cot 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \cot(3\theta )={\frac {3\cot \theta -\cot ^{3}\theta }{1-3\cot ^{2}\theta }}} 
   
 
  
    
      
        sec 
         
        ( 
        3 
        θ 
        ) 
        = 
        
          
            
              
                sec 
                
                  3 
                 
               
               
              θ 
             
            
              4 
              − 
              3 
              
                sec 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \sec(3\theta )={\frac {\sec ^{3}\theta }{4-3\sec ^{2}\theta }}} 
   
 
  
    
      
        csc 
         
        ( 
        3 
        θ 
        ) 
        = 
        
          
            
              
                csc 
                
                  3 
                 
               
               
              θ 
             
            
              3 
              
                csc 
                
                  2 
                 
               
               
              θ 
              − 
              4 
             
           
         
       
     
    {\displaystyle \csc(3\theta )={\frac {\csc ^{3}\theta }{3\csc ^{2}\theta -4}}} 
   
  
Formulae for multiple angles.[ 23] 
  
    
      
        
          
            
              
                sin 
                 
                ( 
                n 
                θ 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    
                       odd 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    
                      
                        k 
                        − 
                        1 
                       
                      2 
                     
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      k 
                     
                    
                      ) 
                     
                   
                 
                
                  cos 
                  
                    n 
                    − 
                    k 
                   
                 
                 
                θ 
                
                  sin 
                  
                    k 
                   
                 
                 
                θ 
                = 
                sin 
                 
                θ 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    ( 
                    n 
                    + 
                    1 
                    ) 
                    
                      / 
                     
                    2 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    0 
                   
                  
                    i 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                    − 
                    j 
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      
                        2 
                        i 
                        + 
                        1 
                       
                     
                    
                      ) 
                     
                   
                 
                
                  
                    
                      ( 
                     
                    
                      i 
                      j 
                     
                    
                      ) 
                     
                   
                 
                
                  cos 
                  
                    n 
                    − 
                    2 
                    ( 
                    i 
                    − 
                    j 
                    ) 
                    − 
                    1 
                   
                 
                 
                θ 
               
             
            
              
                
                 
               
              
                = 
                sin 
                 
                ( 
                θ 
                ) 
                ⋅ 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    
                      ⌊ 
                      
                        
                          
                            n 
                            − 
                            1 
                           
                          2 
                         
                       
                      ⌋ 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    k 
                   
                 
                ⋅ 
                
                  
                    ( 
                    2 
                    ⋅ 
                    cos 
                     
                    ( 
                    θ 
                    ) 
                    ) 
                   
                  
                    n 
                    − 
                    2 
                    k 
                    − 
                    1 
                   
                 
                ⋅ 
                
                  
                    
                      ( 
                     
                    
                      
                        n 
                        − 
                        k 
                        − 
                        1 
                       
                      k 
                     
                    
                      ) 
                     
                   
                 
               
             
            
              
                
                 
               
              
                = 
                
                  2 
                  
                    ( 
                    n 
                    − 
                    1 
                    ) 
                   
                 
                
                  ∏ 
                  
                    k 
                    = 
                    0 
                   
                  
                    n 
                    − 
                    1 
                   
                 
                sin 
                 
                ( 
                k 
                π 
                
                  / 
                 
                n 
                + 
                θ 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin(n\theta )&=\sum _{k{\text{ odd}}}(-1)^{\frac {k-1}{2}}{n \choose k}\cos ^{n-k}\theta \sin ^{k}\theta =\sin \theta \sum _{i=0}^{(n+1)/2}\sum _{j=0}^{i}(-1)^{i-j}{n \choose 2i+1}{i \choose j}\cos ^{n-2(i-j)-1}\theta \\{}&=\sin(\theta )\cdot \sum _{k=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }(-1)^{k}\cdot {(2\cdot \cos(\theta ))}^{n-2k-1}\cdot {n-k-1 \choose k}\\{}&=2^{(n-1)}\prod _{k=0}^{n-1}\sin(k\pi /n+\theta )\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                cos 
                 
                ( 
                n 
                θ 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    
                       even 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    
                      k 
                      2 
                     
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      k 
                     
                    
                      ) 
                     
                   
                 
                
                  cos 
                  
                    n 
                    − 
                    k 
                   
                 
                 
                θ 
                
                  sin 
                  
                    k 
                   
                 
                 
                θ 
                = 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    n 
                    
                      / 
                     
                    2 
                   
                 
                
                  ∑ 
                  
                    j 
                    = 
                    0 
                   
                  
                    i 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                    − 
                    j 
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      
                        2 
                        i 
                       
                     
                    
                      ) 
                     
                   
                 
                
                  
                    
                      ( 
                     
                    
                      i 
                      j 
                     
                    
                      ) 
                     
                   
                 
                
                  cos 
                  
                    n 
                    − 
                    2 
                    ( 
                    i 
                    − 
                    j 
                    ) 
                   
                 
                 
                θ 
               
             
            
              
                
                 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    
                      ⌊ 
                      
                        
                          n 
                          2 
                         
                       
                      ⌋ 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    k 
                   
                 
                ⋅ 
                
                  
                    ( 
                    2 
                    ⋅ 
                    cos 
                     
                    ( 
                    θ 
                    ) 
                    ) 
                   
                  
                    n 
                    − 
                    2 
                    k 
                   
                 
                ⋅ 
                
                  
                    
                      ( 
                     
                    
                      
                        n 
                        − 
                        k 
                       
                      k 
                     
                    
                      ) 
                     
                   
                 
                ⋅ 
                
                  
                    n 
                    
                      2 
                      n 
                      − 
                      2 
                      k 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cos(n\theta )&=\sum _{k{\text{ even}}}(-1)^{\frac {k}{2}}{n \choose k}\cos ^{n-k}\theta \sin ^{k}\theta =\sum _{i=0}^{n/2}\sum _{j=0}^{i}(-1)^{i-j}{n \choose 2i}{i \choose j}\cos ^{n-2(i-j)}\theta \\{}&=\sum _{k=0}^{\left\lfloor {\frac {n}{2}}\right\rfloor }(-1)^{k}\cdot {(2\cdot \cos(\theta ))}^{n-2k}\cdot {n-k \choose k}\cdot {\frac {n}{2n-2k}}\end{aligned}}} 
   
 
  
    
      
        cos 
         
        ( 
        ( 
        2 
        n 
        + 
        1 
        ) 
        θ 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          2 
          
            2 
            n 
           
         
        
          ∏ 
          
            k 
            = 
            0 
           
          
            2 
            n 
           
         
        cos 
         
        ( 
        k 
        π 
        
          / 
         
        ( 
        2 
        n 
        + 
        1 
        ) 
        − 
        θ 
        ) 
       
     
    {\displaystyle \cos((2n+1)\theta )=(-1)^{n}2^{2n}\prod _{k=0}^{2n}\cos(k\pi /(2n+1)-\theta )} 
   
 
  
    
      
        cos 
         
        ( 
        2 
        n 
        θ 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          2 
          
            2 
            n 
            − 
            1 
           
         
        
          ∏ 
          
            k 
            = 
            0 
           
          
            2 
            n 
            − 
            1 
           
         
        cos 
         
        ( 
        ( 
        1 
        + 
        2 
        k 
        ) 
        π 
        
          / 
         
        ( 
        4 
        n 
        ) 
        − 
        θ 
        ) 
       
     
    {\displaystyle \cos(2n\theta )=(-1)^{n}2^{2n-1}\prod _{k=0}^{2n-1}\cos((1+2k)\pi /(4n)-\theta )} 
   
 
  
    
      
        tan 
         
        ( 
        n 
        θ 
        ) 
        = 
        
          
            
              
                ∑ 
                
                  k 
                  
                     odd 
                   
                 
               
              ( 
              − 
              1 
              
                ) 
                
                  
                    
                      k 
                      − 
                      1 
                     
                    2 
                   
                 
               
              
                
                  
                    ( 
                   
                  
                    n 
                    k 
                   
                  
                    ) 
                   
                 
               
              
                tan 
                
                  k 
                 
               
               
              θ 
             
            
              
                ∑ 
                
                  k 
                  
                     even 
                   
                 
               
              ( 
              − 
              1 
              
                ) 
                
                  
                    k 
                    2 
                   
                 
               
              
                
                  
                    ( 
                   
                  
                    n 
                    k 
                   
                  
                    ) 
                   
                 
               
              
                tan 
                
                  k 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \tan(n\theta )={\frac {\sum _{k{\text{ odd}}}(-1)^{\frac {k-1}{2}}{n \choose k}\tan ^{k}\theta }{\sum _{k{\text{ even}}}(-1)^{\frac {k}{2}}{n \choose k}\tan ^{k}\theta }}} 
   
  
Chebyshev method 
The Chebyshev  method is a recursive  algorithm  for finding the n th multiple angle formula knowing the 
  
    
      
        ( 
        n 
        − 
        1 
        ) 
       
     
    {\displaystyle (n-1)} 
   
 
  
    
      
        ( 
        n 
        − 
        2 
        ) 
       
     
    {\displaystyle (n-2)} 
   
 [ 24] 
  
    
      
        cos 
         
        ( 
        n 
        x 
        ) 
       
     
    {\displaystyle \cos(nx)} 
   
 
  
    
      
        cos 
         
        ( 
        ( 
        n 
        − 
        1 
        ) 
        x 
        ) 
       
     
    {\displaystyle \cos((n-1)x)} 
   
 
  
    
      
        cos 
         
        ( 
        ( 
        n 
        − 
        2 
        ) 
        x 
        ) 
       
     
    {\displaystyle \cos((n-2)x)} 
   
 
  
    
      
        cos 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle \cos(x)} 
   
 
  
    
      
        cos 
         
        ( 
        n 
        x 
        ) 
        = 
        2 
        cos 
         
        x 
        cos 
         
        ( 
        ( 
        n 
        − 
        1 
        ) 
        x 
        ) 
        − 
        cos 
         
        ( 
        ( 
        n 
        − 
        2 
        ) 
        x 
        ) 
        . 
       
     
    {\displaystyle \cos(nx)=2\cos x\cos((n-1)x)-\cos((n-2)x).} 
   
 
This can be proved by adding together the formulae
  
    
      
        
          
            
              
                cos 
                 
                ( 
                ( 
                n 
                − 
                1 
                ) 
                x 
                + 
                x 
                ) 
               
              
                = 
                cos 
                 
                ( 
                ( 
                n 
                − 
                1 
                ) 
                x 
                ) 
                cos 
                 
                x 
                − 
                sin 
                 
                ( 
                ( 
                n 
                − 
                1 
                ) 
                x 
                ) 
                sin 
                 
                x 
               
             
            
              
                cos 
                 
                ( 
                ( 
                n 
                − 
                1 
                ) 
                x 
                − 
                x 
                ) 
               
              
                = 
                cos 
                 
                ( 
                ( 
                n 
                − 
                1 
                ) 
                x 
                ) 
                cos 
                 
                x 
                + 
                sin 
                 
                ( 
                ( 
                n 
                − 
                1 
                ) 
                x 
                ) 
                sin 
                 
                x 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cos((n-1)x+x)&=\cos((n-1)x)\cos x-\sin((n-1)x)\sin x\\\cos((n-1)x-x)&=\cos((n-1)x)\cos x+\sin((n-1)x)\sin x\end{aligned}}} 
   
 
It follows by induction that 
  
    
      
        cos 
         
        ( 
        n 
        x 
        ) 
       
     
    {\displaystyle \cos(nx)} 
   
 
  
    
      
        cos 
         
        x 
        , 
       
     
    {\displaystyle \cos x,} 
   
 Chebyshev polynomials#Trigonometric definition .
Similarly, 
  
    
      
        sin 
         
        ( 
        n 
        x 
        ) 
       
     
    {\displaystyle \sin(nx)} 
   
 
  
    
      
        sin 
         
        ( 
        ( 
        n 
        − 
        1 
        ) 
        x 
        ) 
        , 
       
     
    {\displaystyle \sin((n-1)x),} 
   
 
  
    
      
        sin 
         
        ( 
        ( 
        n 
        − 
        2 
        ) 
        x 
        ) 
        , 
       
     
    {\displaystyle \sin((n-2)x),} 
   
 
  
    
      
        cos 
         
        x 
       
     
    {\displaystyle \cos x} 
   
 
  
    
      
        sin 
         
        ( 
        n 
        x 
        ) 
        = 
        2 
        cos 
         
        x 
        sin 
         
        ( 
        ( 
        n 
        − 
        1 
        ) 
        x 
        ) 
        − 
        sin 
         
        ( 
        ( 
        n 
        − 
        2 
        ) 
        x 
        ) 
       
     
    {\displaystyle \sin(nx)=2\cos x\sin((n-1)x)-\sin((n-2)x)} 
   
 
  
    
      
        sin 
         
        ( 
        ( 
        n 
        − 
        1 
        ) 
        x 
        + 
        x 
        ) 
       
     
    {\displaystyle \sin((n-1)x+x)} 
   
 
  
    
      
        sin 
         
        ( 
        ( 
        n 
        − 
        1 
        ) 
        x 
        − 
        x 
        ) 
        . 
       
     
    {\displaystyle \sin((n-1)x-x).} 
   
 
Serving a purpose similar to that of the Chebyshev method, for the tangent we can write:
  
    
      
        tan 
         
        ( 
        n 
        x 
        ) 
        = 
        
          
            
              tan 
               
              ( 
              ( 
              n 
              − 
              1 
              ) 
              x 
              ) 
              + 
              tan 
               
              x 
             
            
              1 
              − 
              tan 
               
              ( 
              ( 
              n 
              − 
              1 
              ) 
              x 
              ) 
              tan 
               
              x 
             
           
         
        . 
       
     
    {\displaystyle \tan(nx)={\frac {\tan((n-1)x)+\tan x}{1-\tan((n-1)x)\tan x}}\,.} 
   
 
  
    
      
        
          
            
              
                sin 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                sgn 
                 
                
                  ( 
                  
                    sin 
                     
                    
                      
                        θ 
                        2 
                       
                     
                   
                  ) 
                 
                
                  
                    
                      
                        1 
                        − 
                        cos 
                         
                        θ 
                       
                      2 
                     
                   
                 
               
             
            
              
                cos 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                sgn 
                 
                
                  ( 
                  
                    cos 
                     
                    
                      
                        θ 
                        2 
                       
                     
                   
                  ) 
                 
                
                  
                    
                      
                        1 
                        + 
                        cos 
                         
                        θ 
                       
                      2 
                     
                   
                 
               
             
            
              
                tan 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                
                  
                    
                      1 
                      − 
                      cos 
                       
                      θ 
                     
                    
                      sin 
                       
                      θ 
                     
                   
                 
                = 
                
                  
                    
                      sin 
                       
                      θ 
                     
                    
                      1 
                      + 
                      cos 
                       
                      θ 
                     
                   
                 
                = 
                csc 
                 
                θ 
                − 
                cot 
                 
                θ 
                = 
                
                  
                    
                      tan 
                       
                      θ 
                     
                    
                      1 
                      + 
                      sec 
                       
                      
                        θ 
                       
                     
                   
                 
               
             
            
              
                = 
                sgn 
                 
                ( 
                sin 
                 
                θ 
                ) 
                
                  
                    
                      
                        1 
                        − 
                        cos 
                         
                        θ 
                       
                      
                        1 
                        + 
                        cos 
                         
                        θ 
                       
                     
                   
                 
                = 
                
                  
                    
                      − 
                      1 
                      + 
                      sgn 
                       
                      ( 
                      cos 
                       
                      θ 
                      ) 
                      
                        
                          1 
                          + 
                          
                            tan 
                            
                              2 
                             
                           
                           
                          θ 
                         
                       
                     
                    
                      tan 
                       
                      θ 
                     
                   
                 
               
             
            
              
                cot 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                
                  
                    
                      1 
                      + 
                      cos 
                       
                      θ 
                     
                    
                      sin 
                       
                      θ 
                     
                   
                 
                = 
                
                  
                    
                      sin 
                       
                      θ 
                     
                    
                      1 
                      − 
                      cos 
                       
                      θ 
                     
                   
                 
                = 
                csc 
                 
                θ 
                + 
                cot 
                 
                θ 
                = 
                sgn 
                 
                ( 
                sin 
                 
                θ 
                ) 
                
                  
                    
                      
                        1 
                        + 
                        cos 
                         
                        θ 
                       
                      
                        1 
                        − 
                        cos 
                         
                        θ 
                       
                     
                   
                 
               
             
            
              
                sec 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                sgn 
                 
                
                  ( 
                  
                    cos 
                     
                    
                      
                        θ 
                        2 
                       
                     
                   
                  ) 
                 
                
                  
                    
                      2 
                      
                        1 
                        + 
                        cos 
                         
                        θ 
                       
                     
                   
                 
               
             
            
              
                csc 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                sgn 
                 
                
                  ( 
                  
                    sin 
                     
                    
                      
                        θ 
                        2 
                       
                     
                   
                  ) 
                 
                
                  
                    
                      2 
                      
                        1 
                        − 
                        cos 
                         
                        θ 
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin {\frac {\theta }{2}}&=\operatorname {sgn} \left(\sin {\frac {\theta }{2}}\right){\sqrt {\frac {1-\cos \theta }{2}}}\\[3pt]\cos {\frac {\theta }{2}}&=\operatorname {sgn} \left(\cos {\frac {\theta }{2}}\right){\sqrt {\frac {1+\cos \theta }{2}}}\\[3pt]\tan {\frac {\theta }{2}}&={\frac {1-\cos \theta }{\sin \theta }}={\frac {\sin \theta }{1+\cos \theta }}=\csc \theta -\cot \theta ={\frac {\tan \theta }{1+\sec {\theta }}}\\[6mu]&=\operatorname {sgn}(\sin \theta ){\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}}={\frac {-1+\operatorname {sgn}(\cos \theta ){\sqrt {1+\tan ^{2}\theta }}}{\tan \theta }}\\[3pt]\cot {\frac {\theta }{2}}&={\frac {1+\cos \theta }{\sin \theta }}={\frac {\sin \theta }{1-\cos \theta }}=\csc \theta +\cot \theta =\operatorname {sgn}(\sin \theta ){\sqrt {\frac {1+\cos \theta }{1-\cos \theta }}}\\\sec {\frac {\theta }{2}}&=\operatorname {sgn} \left(\cos {\frac {\theta }{2}}\right){\sqrt {\frac {2}{1+\cos \theta }}}\\\csc {\frac {\theta }{2}}&=\operatorname {sgn} \left(\sin {\frac {\theta }{2}}\right){\sqrt {\frac {2}{1-\cos \theta }}}\\\end{aligned}}} 
   
 [ 25] [ 26] 
Also
  
    
      
        
          
            
              
                tan 
                 
                
                  
                    
                      η 
                      ± 
                      θ 
                     
                    2 
                   
                 
               
              
                = 
                
                  
                    
                      sin 
                       
                      η 
                      ± 
                      sin 
                       
                      θ 
                     
                    
                      cos 
                       
                      η 
                      + 
                      cos 
                       
                      θ 
                     
                   
                 
               
             
            
              
                tan 
                 
                
                  ( 
                  
                    
                      
                        θ 
                        2 
                       
                     
                    + 
                    
                      
                        π 
                        4 
                       
                     
                   
                  ) 
                 
               
              
                = 
                sec 
                 
                θ 
                + 
                tan 
                 
                θ 
               
             
            
              
                
                  
                    
                      
                        1 
                        − 
                        sin 
                         
                        θ 
                       
                      
                        1 
                        + 
                        sin 
                         
                        θ 
                       
                     
                   
                 
               
              
                = 
                
                  
                    
                      | 
                      
                        1 
                        − 
                        tan 
                         
                        
                          
                            θ 
                            2 
                           
                         
                       
                      | 
                     
                    
                      | 
                      
                        1 
                        + 
                        tan 
                         
                        
                          
                            θ 
                            2 
                           
                         
                       
                      | 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tan {\frac {\eta \pm \theta }{2}}&={\frac {\sin \eta \pm \sin \theta }{\cos \eta +\cos \theta }}\\[3pt]\tan \left({\frac {\theta }{2}}+{\frac {\pi }{4}}\right)&=\sec \theta +\tan \theta \\[3pt]{\sqrt {\frac {1-\sin \theta }{1+\sin \theta }}}&={\frac {\left|1-\tan {\frac {\theta }{2}}\right|}{\left|1+\tan {\frac {\theta }{2}}\right|}}\end{aligned}}} 
   
 
Table 
These can be shown by using either the sum and difference identities or the multiple-angle formulae.
Sine 
Cosine 
Tangent 
Cotangent
  
Double-angle formula[ 27] [ 28]  
  
    
      
        
          
            
              
                sin 
                 
                ( 
                2 
                θ 
                ) 
               
              
                = 
                2 
                sin 
                 
                θ 
                cos 
                 
                θ 
                  
               
             
            
              
                = 
                
                  
                    
                      2 
                      tan 
                       
                      θ 
                     
                    
                      1 
                      + 
                      
                        tan 
                        
                          2 
                         
                       
                       
                      θ 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin(2\theta )&=2\sin \theta \cos \theta \ \\&={\frac {2\tan \theta }{1+\tan ^{2}\theta }}\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                cos 
                 
                ( 
                2 
                θ 
                ) 
               
              
                = 
                
                  cos 
                  
                    2 
                   
                 
                 
                θ 
                − 
                
                  sin 
                  
                    2 
                   
                 
                 
                θ 
               
             
            
              
                = 
                2 
                
                  cos 
                  
                    2 
                   
                 
                 
                θ 
                − 
                1 
               
             
            
              
                = 
                1 
                − 
                2 
                
                  sin 
                  
                    2 
                   
                 
                 
                θ 
               
             
            
              
                = 
                
                  
                    
                      1 
                      − 
                      
                        tan 
                        
                          2 
                         
                       
                       
                      θ 
                     
                    
                      1 
                      + 
                      
                        tan 
                        
                          2 
                         
                       
                       
                      θ 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cos(2\theta )&=\cos ^{2}\theta -\sin ^{2}\theta \\&=2\cos ^{2}\theta -1\\&=1-2\sin ^{2}\theta \\&={\frac {1-\tan ^{2}\theta }{1+\tan ^{2}\theta }}\end{aligned}}} 
   
 
  
    
      
        tan 
         
        ( 
        2 
        θ 
        ) 
        = 
        
          
            
              2 
              tan 
               
              θ 
             
            
              1 
              − 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \tan(2\theta )={\frac {2\tan \theta }{1-\tan ^{2}\theta }}} 
   
 
  
    
      
        cot 
         
        ( 
        2 
        θ 
        ) 
        = 
        
          
            
              
                cot 
                
                  2 
                 
               
               
              θ 
              − 
              1 
             
            
              2 
              cot 
               
              θ 
             
           
         
       
     
    {\displaystyle \cot(2\theta )={\frac {\cot ^{2}\theta -1}{2\cot \theta }}} 
   
  
Triple-angle formula[ 20] [ 29]  
  
    
      
        
          
            
              
                sin 
                 
                ( 
                3 
                θ 
                ) 
               
              
                = 
                − 
                
                  sin 
                  
                    3 
                   
                 
                 
                θ 
                + 
                3 
                
                  cos 
                  
                    2 
                   
                 
                 
                θ 
                sin 
                 
                θ 
               
             
            
              
                = 
                − 
                4 
                
                  sin 
                  
                    3 
                   
                 
                 
                θ 
                + 
                3 
                sin 
                 
                θ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin(3\theta )&=-\sin ^{3}\theta +3\cos ^{2}\theta \sin \theta \\&=-4\sin ^{3}\theta +3\sin \theta \end{aligned}}} 
   
 
  
    
      
        
          
            
              
                cos 
                 
                ( 
                3 
                θ 
                ) 
               
              
                = 
                
                  cos 
                  
                    3 
                   
                 
                 
                θ 
                − 
                3 
                
                  sin 
                  
                    2 
                   
                 
                 
                θ 
                cos 
                 
                θ 
               
             
            
              
                = 
                4 
                
                  cos 
                  
                    3 
                   
                 
                 
                θ 
                − 
                3 
                cos 
                 
                θ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cos(3\theta )&=\cos ^{3}\theta -3\sin ^{2}\theta \cos \theta \\&=4\cos ^{3}\theta -3\cos \theta \end{aligned}}} 
   
 
  
    
      
        tan 
         
        ( 
        3 
        θ 
        ) 
        = 
        
          
            
              3 
              tan 
               
              θ 
              − 
              
                tan 
                
                  3 
                 
               
               
              θ 
             
            
              1 
              − 
              3 
              
                tan 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \tan(3\theta )={\frac {3\tan \theta -\tan ^{3}\theta }{1-3\tan ^{2}\theta }}} 
   
 
  
    
      
        cot 
         
        ( 
        3 
        θ 
        ) 
        = 
        
          
            
              3 
              cot 
               
              θ 
              − 
              
                cot 
                
                  3 
                 
               
               
              θ 
             
            
              1 
              − 
              3 
              
                cot 
                
                  2 
                 
               
               
              θ 
             
           
         
       
     
    {\displaystyle \cot(3\theta )={\frac {3\cot \theta -\cot ^{3}\theta }{1-3\cot ^{2}\theta }}} 
   
  
Half-angle formula[ 25] [ 26]  
  
    
      
        
          
            
              
                sin 
                 
                
                  
                    θ 
                    2 
                   
                 
                = 
                sgn 
                 
                
                  ( 
                  
                    sin 
                     
                    
                      
                        θ 
                        2 
                       
                     
                   
                  ) 
                 
                
                  
                    
                      
                        1 
                        − 
                        cos 
                         
                        θ 
                       
                      2 
                     
                   
                 
               
             
            
               
            
              
                
                  ( 
                  
                    
                      or  
                     
                    
                      sin 
                      
                        2 
                       
                     
                     
                    
                      
                        θ 
                        2 
                       
                     
                    = 
                    
                      
                        
                          1 
                          − 
                          cos 
                           
                          θ 
                         
                        2 
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\sin {\frac {\theta }{2}}=\operatorname {sgn} \left(\sin {\frac {\theta }{2}}\right){\sqrt {\frac {1-\cos \theta }{2}}}\\\\&\left({\text{or }}\sin ^{2}{\frac {\theta }{2}}={\frac {1-\cos \theta }{2}}\right)\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                cos 
                 
                
                  
                    θ 
                    2 
                   
                 
                = 
                sgn 
                 
                
                  ( 
                  
                    cos 
                     
                    
                      
                        θ 
                        2 
                       
                     
                   
                  ) 
                 
                
                  
                    
                      
                        1 
                        + 
                        cos 
                         
                        θ 
                       
                      2 
                     
                   
                 
               
             
            
               
            
              
                
                  ( 
                  
                    
                      or  
                     
                    
                      cos 
                      
                        2 
                       
                     
                     
                    
                      
                        θ 
                        2 
                       
                     
                    = 
                    
                      
                        
                          1 
                          + 
                          cos 
                           
                          θ 
                         
                        2 
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\cos {\frac {\theta }{2}}=\operatorname {sgn} \left(\cos {\frac {\theta }{2}}\right){\sqrt {\frac {1+\cos \theta }{2}}}\\\\&\left({\text{or }}\cos ^{2}{\frac {\theta }{2}}={\frac {1+\cos \theta }{2}}\right)\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                tan 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                csc 
                 
                θ 
                − 
                cot 
                 
                θ 
               
             
            
              
                = 
                ± 
                
                  
                    
                      
                        1 
                        − 
                        cos 
                         
                        θ 
                       
                      
                        1 
                        + 
                        cos 
                         
                        θ 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      sin 
                       
                      θ 
                     
                    
                      1 
                      + 
                      cos 
                       
                      θ 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      1 
                      − 
                      cos 
                       
                      θ 
                     
                    
                      sin 
                       
                      θ 
                     
                   
                 
               
             
            
              
                tan 
                 
                
                  
                    
                      η 
                      + 
                      θ 
                     
                    2 
                   
                 
               
              
                = 
                
                  
                    
                      sin 
                       
                      η 
                      + 
                      sin 
                       
                      θ 
                     
                    
                      cos 
                       
                      η 
                      + 
                      cos 
                       
                      θ 
                     
                   
                 
               
             
            
              
                tan 
                 
                
                  ( 
                  
                    
                      
                        θ 
                        2 
                       
                     
                    + 
                    
                      
                        π 
                        4 
                       
                     
                   
                  ) 
                 
               
              
                = 
                sec 
                 
                θ 
                + 
                tan 
                 
                θ 
               
             
            
              
                
                  
                    
                      
                        1 
                        − 
                        sin 
                         
                        θ 
                       
                      
                        1 
                        + 
                        sin 
                         
                        θ 
                       
                     
                   
                 
               
              
                = 
                
                  
                    
                      | 
                      
                        1 
                        − 
                        tan 
                         
                        
                          
                            θ 
                            2 
                           
                         
                       
                      | 
                     
                    
                      | 
                      
                        1 
                        + 
                        tan 
                         
                        
                          
                            θ 
                            2 
                           
                         
                       
                      | 
                     
                   
                 
               
             
            
              
                tan 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                
                  
                    
                      tan 
                       
                      θ 
                     
                    
                      1 
                      + 
                      
                        
                          1 
                          + 
                          
                            tan 
                            
                              2 
                             
                           
                           
                          θ 
                         
                       
                     
                   
                 
               
             
            
              
                
                  for  
                 
                θ 
                ∈ 
                
                  ( 
                  
                    − 
                    
                      
                        
                          π 
                          2 
                         
                       
                     
                    , 
                    
                      
                        
                          π 
                          2 
                         
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tan {\frac {\theta }{2}}&=\csc \theta -\cot \theta \\&=\pm \,{\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}}\\[3pt]&={\frac {\sin \theta }{1+\cos \theta }}\\[3pt]&={\frac {1-\cos \theta }{\sin \theta }}\\[5pt]\tan {\frac {\eta +\theta }{2}}&={\frac {\sin \eta +\sin \theta }{\cos \eta +\cos \theta }}\\[5pt]\tan \left({\frac {\theta }{2}}+{\frac {\pi }{4}}\right)&=\sec \theta +\tan \theta \\[5pt]{\sqrt {\frac {1-\sin \theta }{1+\sin \theta }}}&={\frac {\left|1-\tan {\frac {\theta }{2}}\right|}{\left|1+\tan {\frac {\theta }{2}}\right|}}\\[5pt]\tan {\frac {\theta }{2}}&={\frac {\tan \theta }{1+{\sqrt {1+\tan ^{2}\theta }}}}\\&{\text{for }}\theta \in \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                cot 
                 
                
                  
                    θ 
                    2 
                   
                 
               
              
                = 
                csc 
                 
                θ 
                + 
                cot 
                 
                θ 
               
             
            
              
                = 
                ± 
                
                  
                    
                      
                        1 
                        + 
                        cos 
                         
                        θ 
                       
                      
                        1 
                        − 
                        cos 
                         
                        θ 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      sin 
                       
                      θ 
                     
                    
                      1 
                      − 
                      cos 
                       
                      θ 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      1 
                      + 
                      cos 
                       
                      θ 
                     
                    
                      sin 
                       
                      θ 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cot {\frac {\theta }{2}}&=\csc \theta +\cot \theta \\&=\pm \,{\sqrt {\frac {1+\cos \theta }{1-\cos \theta }}}\\[3pt]&={\frac {\sin \theta }{1-\cos \theta }}\\[4pt]&={\frac {1+\cos \theta }{\sin \theta }}\end{aligned}}} 
   
  
 
The fact that the triple-angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction  of angle trisection  to the algebraic problem of solving a cubic equation , which allows one to prove that trisection is in general impossible  using the given tools.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation  4x 3  − 3x  + d  = 0 , where 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 d  is the known value of the cosine function at the full angle. However, the discriminant  of this equation is positive, so this equation has three real roots (of which only one is the solution for the cosine of the one-third angle). None of these solutions are reducible  to a real algebraic expression , as they use intermediate complex numbers under the cube roots .
Obtained by solving the second and third versions of the cosine double-angle formula.
Sine
 
Cosine
 
Other
  
  
    
      
        
          sin 
          
            2 
           
         
         
        θ 
        = 
        
          
            
              1 
              − 
              cos 
               
              ( 
              2 
              θ 
              ) 
             
            2 
           
         
       
     
    {\displaystyle \sin ^{2}\theta ={\frac {1-\cos(2\theta )}{2}}} 
   
 
  
    
      
        
          cos 
          
            2 
           
         
         
        θ 
        = 
        
          
            
              1 
              + 
              cos 
               
              ( 
              2 
              θ 
              ) 
             
            2 
           
         
       
     
    {\displaystyle \cos ^{2}\theta ={\frac {1+\cos(2\theta )}{2}}} 
   
 
  
    
      
        
          sin 
          
            2 
           
         
         
        θ 
        
          cos 
          
            2 
           
         
         
        θ 
        = 
        
          
            
              1 
              − 
              cos 
               
              ( 
              4 
              θ 
              ) 
             
            8 
           
         
       
     
    {\displaystyle \sin ^{2}\theta \cos ^{2}\theta ={\frac {1-\cos(4\theta )}{8}}} 
   
  
  
    
      
        
          sin 
          
            3 
           
         
         
        θ 
        = 
        
          
            
              3 
              sin 
               
              θ 
              − 
              sin 
               
              ( 
              3 
              θ 
              ) 
             
            4 
           
         
       
     
    {\displaystyle \sin ^{3}\theta ={\frac {3\sin \theta -\sin(3\theta )}{4}}} 
   
 
  
    
      
        
          cos 
          
            3 
           
         
         
        θ 
        = 
        
          
            
              3 
              cos 
               
              θ 
              + 
              cos 
               
              ( 
              3 
              θ 
              ) 
             
            4 
           
         
       
     
    {\displaystyle \cos ^{3}\theta ={\frac {3\cos \theta +\cos(3\theta )}{4}}} 
   
 
  
    
      
        
          sin 
          
            3 
           
         
         
        θ 
        
          cos 
          
            3 
           
         
         
        θ 
        = 
        
          
            
              3 
              sin 
               
              ( 
              2 
              θ 
              ) 
              − 
              sin 
               
              ( 
              6 
              θ 
              ) 
             
            32 
           
         
       
     
    {\displaystyle \sin ^{3}\theta \cos ^{3}\theta ={\frac {3\sin(2\theta )-\sin(6\theta )}{32}}} 
   
  
  
    
      
        
          sin 
          
            4 
           
         
         
        θ 
        = 
        
          
            
              3 
              − 
              4 
              cos 
               
              ( 
              2 
              θ 
              ) 
              + 
              cos 
               
              ( 
              4 
              θ 
              ) 
             
            8 
           
         
       
     
    {\displaystyle \sin ^{4}\theta ={\frac {3-4\cos(2\theta )+\cos(4\theta )}{8}}} 
   
 
  
    
      
        
          cos 
          
            4 
           
         
         
        θ 
        = 
        
          
            
              3 
              + 
              4 
              cos 
               
              ( 
              2 
              θ 
              ) 
              + 
              cos 
               
              ( 
              4 
              θ 
              ) 
             
            8 
           
         
       
     
    {\displaystyle \cos ^{4}\theta ={\frac {3+4\cos(2\theta )+\cos(4\theta )}{8}}} 
   
 
  
    
      
        
          sin 
          
            4 
           
         
         
        θ 
        
          cos 
          
            4 
           
         
         
        θ 
        = 
        
          
            
              3 
              − 
              4 
              cos 
               
              ( 
              4 
              θ 
              ) 
              + 
              cos 
               
              ( 
              8 
              θ 
              ) 
             
            128 
           
         
       
     
    {\displaystyle \sin ^{4}\theta \cos ^{4}\theta ={\frac {3-4\cos(4\theta )+\cos(8\theta )}{128}}} 
   
  
  
    
      
        
          sin 
          
            5 
           
         
         
        θ 
        = 
        
          
            
              10 
              sin 
               
              θ 
              − 
              5 
              sin 
               
              ( 
              3 
              θ 
              ) 
              + 
              sin 
               
              ( 
              5 
              θ 
              ) 
             
            16 
           
         
       
     
    {\displaystyle \sin ^{5}\theta ={\frac {10\sin \theta -5\sin(3\theta )+\sin(5\theta )}{16}}} 
   
 
  
    
      
        
          cos 
          
            5 
           
         
         
        θ 
        = 
        
          
            
              10 
              cos 
               
              θ 
              + 
              5 
              cos 
               
              ( 
              3 
              θ 
              ) 
              + 
              cos 
               
              ( 
              5 
              θ 
              ) 
             
            16 
           
         
       
     
    {\displaystyle \cos ^{5}\theta ={\frac {10\cos \theta +5\cos(3\theta )+\cos(5\theta )}{16}}} 
   
 
  
    
      
        
          sin 
          
            5 
           
         
         
        θ 
        
          cos 
          
            5 
           
         
         
        θ 
        = 
        
          
            
              10 
              sin 
               
              ( 
              2 
              θ 
              ) 
              − 
              5 
              sin 
               
              ( 
              6 
              θ 
              ) 
              + 
              sin 
               
              ( 
              10 
              θ 
              ) 
             
            512 
           
         
       
     
    {\displaystyle \sin ^{5}\theta \cos ^{5}\theta ={\frac {10\sin(2\theta )-5\sin(6\theta )+\sin(10\theta )}{512}}} 
   
  
 
Cosine power-reduction formula: an illustrative diagram. The red, orange and blue triangles are all similar, and the red and orange triangles are congruent. The hypotenuse 
  
    
      
        
          
            
              A 
              D 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AD}}} 
   
 
  
    
      
        2 
        cos 
         
        θ 
       
     
    {\displaystyle 2\cos \theta } 
   
 
  
    
      
        ∠ 
        D 
        A 
        E 
       
     
    {\displaystyle \angle DAE} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        
          
            
              A 
              E 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AE}}} 
   
 
  
    
      
        2 
        
          cos 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle 2\cos ^{2}\theta } 
   
 
  
    
      
        
          
            
              B 
              D 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {BD}}} 
   
 
  
    
      
        
          
            
              A 
              F 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AF}}} 
   
 
  
    
      
        1 
        + 
        cos 
         
        ( 
        2 
        θ 
        ) 
       
     
    {\displaystyle 1+\cos(2\theta )} 
   
 
  
    
      
        2 
        
          cos 
          
            2 
           
         
         
        θ 
        = 
        1 
        + 
        cos 
         
        ( 
        2 
        θ 
        ) 
       
     
    {\displaystyle 2\cos ^{2}\theta =1+\cos(2\theta )} 
   
 
  
    
      
        2 
       
     
    {\displaystyle 2} 
   
 
  
    
      
        
          cos 
          
            2 
           
         
         
        θ 
        = 
       
     
    {\displaystyle \cos ^{2}\theta =} 
   
 
  
    
      
        
          
            1 
            2 
           
         
        ( 
        1 
        + 
        cos 
         
        ( 
        2 
        θ 
        ) 
        ) 
       
     
    {\textstyle {\frac {1}{2}}(1+\cos(2\theta ))} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        θ 
        
          / 
         
        2 
       
     
    {\displaystyle \theta /2} 
   
 
  
    
      
        cos 
         
        
          ( 
          
            θ 
            
              / 
             
            2 
           
          ) 
         
        = 
        ± 
        
          
            
              ( 
              
                1 
                + 
                cos 
                 
                θ 
               
              ) 
             
            
              / 
             
            2 
           
         
        . 
       
     
    {\textstyle \cos \left(\theta /2\right)=\pm {\sqrt {\left(1+\cos \theta \right)/2}}.} 
   
  Sine power-reduction formula: an illustrative diagram. The shaded blue and green triangles, and the red-outlined triangle 
  
    
      
        E 
        B 
        D 
       
     
    {\displaystyle EBD} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        
          
            
              B 
              D 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {BD}}} 
   
 
  
    
      
        2 
        sin 
         
        θ 
       
     
    {\displaystyle 2\sin \theta } 
   
 
  
    
      
        
          
            
              D 
              E 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {DE}}} 
   
 
  
    
      
        2 
        
          sin 
          
            2 
           
         
         
        θ 
       
     
    {\displaystyle 2\sin ^{2}\theta } 
   
 
  
    
      
        
          
            
              A 
              E 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AE}}} 
   
 
  
    
      
        cos 
         
        2 
        θ 
       
     
    {\displaystyle \cos 2\theta } 
   
 
  
    
      
        
          
            
              A 
              E 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AE}}} 
   
 
  
    
      
        
          
            
              D 
              E 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {DE}}} 
   
 
  
    
      
        
          
            
              A 
              D 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {AD}}} 
   
 
  
    
      
        cos 
         
        2 
        θ 
        + 
        2 
        
          sin 
          
            2 
           
         
         
        θ 
        = 
        1 
       
     
    {\displaystyle \cos 2\theta +2\sin ^{2}\theta =1} 
   
 
  
    
      
        cos 
         
        2 
        θ 
       
     
    {\displaystyle \cos 2\theta } 
   
 
  
    
      
        
          sin 
          
            2 
           
         
         
        θ 
        = 
       
     
    {\displaystyle \sin ^{2}\theta =} 
   
 
  
    
      
        
          
            1 
            2 
           
         
        ( 
        1 
        − 
        cos 
         
        ( 
        2 
        θ 
        ) 
        ) 
       
     
    {\textstyle {\frac {1}{2}}(1-\cos(2\theta ))} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        θ 
        
          / 
         
        2 
       
     
    {\displaystyle \theta /2} 
   
 
  
    
      
        sin 
         
        
          ( 
          
            θ 
            
              / 
             
            2 
           
          ) 
         
        = 
        ± 
        
          
            
              ( 
              
                1 
                − 
                cos 
                 
                θ 
               
              ) 
             
            
              / 
             
            2 
           
         
        . 
       
     
    {\textstyle \sin \left(\theta /2\right)=\pm {\sqrt {\left(1-\cos \theta \right)/2}}.} 
   
 
  
    
      
        
          
            
              E 
              B 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {EB}}} 
   
 
  
    
      
        sin 
         
        2 
        θ 
        = 
        2 
        sin 
         
        θ 
        cos 
         
        θ 
       
     
    {\displaystyle \sin 2\theta =2\sin \theta \cos \theta } 
   
  
In general terms of powers of 
  
    
      
        sin 
         
        θ 
       
     
    {\displaystyle \sin \theta } 
   
 
  
    
      
        cos 
         
        θ 
       
     
    {\displaystyle \cos \theta } 
   
 De Moivre's formula , Euler's formula  and the binomial theorem .
if n  is ...
 
  
    
      
        
          cos 
          
            n 
           
         
         
        θ 
       
     
    {\displaystyle \cos ^{n}\theta } 
   
 
  
    
      
        
          sin 
          
            n 
           
         
         
        θ 
       
     
    {\displaystyle \sin ^{n}\theta } 
   
  
n  is odd
  
    
      
        
          cos 
          
            n 
           
         
         
        θ 
        = 
        
          
            2 
            
              2 
              
                n 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            
              
                n 
                − 
                1 
               
              2 
             
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        cos 
         
        
          
            
              ( 
             
           
          ( 
          n 
          − 
          2 
          k 
          ) 
          θ 
          
            
              ) 
             
           
         
       
     
    {\displaystyle \cos ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}} 
   
 
  
    
      
        
          sin 
          
            n 
           
         
         
        θ 
        = 
        
          
            2 
            
              2 
              
                n 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            
              
                n 
                − 
                1 
               
              2 
             
           
         
        ( 
        − 
        1 
        
          ) 
          
            
              ( 
              
                
                  
                    
                      n 
                      − 
                      1 
                     
                    2 
                   
                 
                − 
                k 
               
              ) 
             
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        sin 
         
        
          
            
              ( 
             
           
          ( 
          n 
          − 
          2 
          k 
          ) 
          θ 
          
            
              ) 
             
           
         
       
     
    {\displaystyle \sin ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}(-1)^{\left({\frac {n-1}{2}}-k\right)}{\binom {n}{k}}\sin {{\big (}(n-2k)\theta {\big )}}} 
   
  
n  is even
  
    
      
        
          cos 
          
            n 
           
         
         
        θ 
        = 
        
          
            1 
            
              2 
              
                n 
               
             
           
         
        
          
            
              ( 
             
            
              n 
              
                n 
                2 
               
             
            
              ) 
             
           
         
        + 
        
          
            2 
            
              2 
              
                n 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            
              
                n 
                2 
               
             
            − 
            1 
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        cos 
         
        
          
            
              ( 
             
           
          ( 
          n 
          − 
          2 
          k 
          ) 
          θ 
          
            
              ) 
             
           
         
       
     
    {\displaystyle \cos ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}} 
   
 
  
    
      
        
          sin 
          
            n 
           
         
         
        θ 
        = 
        
          
            1 
            
              2 
              
                n 
               
             
           
         
        
          
            
              ( 
             
            
              n 
              
                n 
                2 
               
             
            
              ) 
             
           
         
        + 
        
          
            2 
            
              2 
              
                n 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            
              
                n 
                2 
               
             
            − 
            1 
           
         
        ( 
        − 
        1 
        
          ) 
          
            
              ( 
              
                
                  
                    n 
                    2 
                   
                 
                − 
                k 
               
              ) 
             
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        cos 
         
        
          
            
              ( 
             
           
          ( 
          n 
          − 
          2 
          k 
          ) 
          θ 
          
            
              ) 
             
           
         
       
     
    {\displaystyle \sin ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{\left({\frac {n}{2}}-k\right)}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}} 
   
  
Product-to-sum and sum-to-product identities 
Proof of the sum-and-difference-to-product cosine identity for prosthaphaeresis calculations using an isosceles triangle   The product-to-sum identities[ 30] prosthaphaeresis  formulae can be proven by expanding their right-hand sides using the angle addition theorems . Historically, the first four of these were known as Werner's formulas , after Johannes Werner  who used them for astronomical calculations.[ 31] amplitude modulation  for an application of the product-to-sum formulae, and beat (acoustics)  and phase detector  for applications of the sum-to-product formulae.
Product-to-sum identities 
The product of two sines or cosines of different angles can be converted to a sum of trigonometric functions of a sum and difference of those angles:
  
    
      
        
          
            
              
                cos 
                 
                θ 
                cos 
                 
                φ 
               
              
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    ( 
                   
                 
                  
                cos 
                 
                ( 
                θ 
                − 
                φ 
                ) 
                + 
                cos 
                 
                ( 
                θ 
                + 
                φ 
                ) 
                
                  
                    ) 
                   
                 
                , 
               
             
            
              
                sin 
                 
                θ 
                sin 
                 
                φ 
               
              
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    ( 
                   
                 
                  
                cos 
                 
                ( 
                θ 
                − 
                φ 
                ) 
                − 
                cos 
                 
                ( 
                θ 
                + 
                φ 
                ) 
                
                  
                    ) 
                   
                 
                , 
               
             
            
              
                sin 
                 
                θ 
                cos 
                 
                φ 
               
              
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    ( 
                   
                 
                  
                sin 
                 
                ( 
                θ 
                + 
                φ 
                ) 
                + 
                sin 
                 
                ( 
                θ 
                − 
                φ 
                ) 
                
                  
                    ) 
                   
                 
                , 
               
             
            
              
                cos 
                 
                θ 
                sin 
                 
                φ 
               
              
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    ( 
                   
                 
                  
                sin 
                 
                ( 
                θ 
                + 
                φ 
                ) 
                − 
                sin 
                 
                ( 
                θ 
                − 
                φ 
                ) 
                
                  
                    ) 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cos \theta \,\cos \varphi &={\tfrac {1}{2}}{\bigl (}\!\!~\cos(\theta -\varphi )+\cos(\theta +\varphi ){\bigr )},\\[5mu]\sin \theta \,\sin \varphi &={\tfrac {1}{2}}{\bigl (}\!\!~\cos(\theta -\varphi )-\cos(\theta +\varphi ){\bigr )},\\[5mu]\sin \theta \,\cos \varphi &={\tfrac {1}{2}}{\bigl (}\!\!~\sin(\theta +\varphi )+\sin(\theta -\varphi ){\bigr )},\\[5mu]\cos \theta \,\sin \varphi &={\tfrac {1}{2}}{\bigl (}\!\!~\sin(\theta +\varphi )-\sin(\theta -\varphi ){\bigr )}.\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                tan 
                 
                θ 
                tan 
                 
                φ 
               
              
                = 
                
                  
                    
                      cos 
                       
                      ( 
                      θ 
                      − 
                      φ 
                      ) 
                      − 
                      cos 
                       
                      ( 
                      θ 
                      + 
                      φ 
                      ) 
                     
                    
                      cos 
                       
                      ( 
                      θ 
                      − 
                      φ 
                      ) 
                      + 
                      cos 
                       
                      ( 
                      θ 
                      + 
                      φ 
                      ) 
                     
                   
                 
                , 
               
             
            
              
                
                  
                    
                      tan 
                       
                      θ 
                     
                    
                      tan 
                       
                      φ 
                     
                   
                 
               
              
                = 
                
                  
                    
                      sin 
                       
                      ( 
                      θ 
                      + 
                      φ 
                      ) 
                      + 
                      sin 
                       
                      ( 
                      θ 
                      − 
                      φ 
                      ) 
                     
                    
                      sin 
                       
                      ( 
                      θ 
                      + 
                      φ 
                      ) 
                      − 
                      sin 
                       
                      ( 
                      θ 
                      − 
                      φ 
                      ) 
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tan \theta \,\tan \varphi &={\frac {\cos(\theta -\varphi )-\cos(\theta +\varphi )}{\cos(\theta -\varphi )+\cos(\theta +\varphi )}},\\[5mu]{\frac {\tan \theta }{\tan \varphi }}&={\frac {\sin(\theta +\varphi )+\sin(\theta -\varphi )}{\sin(\theta +\varphi )-\sin(\theta -\varphi )}}.\end{aligned}}} 
   
 
More generally, for a product of any number of sines or cosines,
  
    
      
        
          
            
              
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                cos 
                 
                
                  θ 
                  
                    k 
                   
                 
               
              
                = 
                
                  
                    1 
                    
                      2 
                      
                        n 
                       
                     
                   
                 
                
                  ∑ 
                  
                    e 
                    ∈ 
                    S 
                   
                 
                cos 
                 
                ( 
                
                  e 
                  
                    1 
                   
                 
                
                  θ 
                  
                    1 
                   
                 
                + 
                ⋯ 
                + 
                
                  e 
                  
                    n 
                   
                 
                
                  θ 
                  
                    n 
                   
                 
                ) 
               
             
            
              
                
                  where  
                 
                e 
                = 
                ( 
                
                  e 
                  
                    1 
                   
                 
                , 
                … 
                , 
                
                  e 
                  
                    n 
                   
                 
                ) 
                ∈ 
                S 
                = 
                { 
                1 
                , 
                − 
                1 
                
                  } 
                  
                    n 
                   
                 
                , 
               
             
            
              
                
                  ∏ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                sin 
                 
                
                  θ 
                  
                    k 
                   
                 
               
              
                = 
                
                  
                    
                      ( 
                      − 
                      1 
                      
                        ) 
                        
                          
                            ⌊ 
                            
                              
                                n 
                                2 
                               
                             
                            ⌋ 
                           
                         
                       
                     
                    
                      2 
                      
                        n 
                       
                     
                   
                 
                
                  
                    { 
                    
                      
                        
                          
                            
                              ∑ 
                              
                                e 
                                ∈ 
                                S 
                               
                             
                            cos 
                             
                            ( 
                            
                              e 
                              
                                1 
                               
                             
                            
                              θ 
                              
                                1 
                               
                             
                            + 
                            ⋯ 
                            + 
                            
                              e 
                              
                                n 
                               
                             
                            
                              θ 
                              
                                n 
                               
                             
                            ) 
                            
                              ∏ 
                              
                                j 
                                = 
                                1 
                               
                              
                                n 
                               
                             
                            
                              e 
                              
                                j 
                               
                             
                            
                              if 
                             
                            n 
                            
                              is even 
                             
                            , 
                           
                         
                       
                      
                        
                          
                            
                              ∑ 
                              
                                e 
                                ∈ 
                                S 
                               
                             
                            sin 
                             
                            ( 
                            
                              e 
                              
                                1 
                               
                             
                            
                              θ 
                              
                                1 
                               
                             
                            + 
                            ⋯ 
                            + 
                            
                              e 
                              
                                n 
                               
                             
                            
                              θ 
                              
                                n 
                               
                             
                            ) 
                            
                              ∏ 
                              
                                j 
                                = 
                                1 
                               
                              
                                n 
                               
                             
                            
                              e 
                              
                                j 
                               
                             
                            
                              if 
                             
                            n 
                            
                              is odd 
                             
                            . 
                           
                         
                       
                     
                     
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\prod _{k=1}^{n}\cos \theta _{k}&={\frac {1}{2^{n}}}\sum _{e\in S}\cos(e_{1}\theta _{1}+\cdots +e_{n}\theta _{n})\\[5mu]&{\text{where }}e=(e_{1},\ldots ,e_{n})\in S=\{1,-1\}^{n},\\\prod _{k=1}^{n}\sin \theta _{k}&={\frac {(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }}{2^{n}}}{\begin{cases}\displaystyle \sum _{e\in S}\cos(e_{1}\theta _{1}+\cdots +e_{n}\theta _{n})\prod _{j=1}^{n}e_{j}\;{\text{if}}\;n\;{\text{is even}},\\\displaystyle \sum _{e\in S}\sin(e_{1}\theta _{1}+\cdots +e_{n}\theta _{n})\prod _{j=1}^{n}e_{j}\;{\text{if}}\;n\;{\text{is odd}}.\end{cases}}\end{aligned}}} 
   
 
Sum-to-product identities 
Diagram illustrating sum-to-product identities for sine and cosine. The blue right-angled triangle has angle 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        p 
        = 
        
          
            
              1 
              2 
             
           
         
        ( 
        θ 
        + 
        φ 
        ) 
       
     
    {\displaystyle p={\tfrac {1}{2}}(\theta +\varphi )} 
   
 
  
    
      
        q 
        = 
        
          
            
              1 
              2 
             
           
         
        ( 
        θ 
        − 
        φ 
        ) 
       
     
    {\displaystyle q={\tfrac {1}{2}}(\theta -\varphi )} 
   
 
  
    
      
        θ 
        = 
        p 
        + 
        q 
       
     
    {\displaystyle \theta =p+q} 
   
 
  
    
      
        φ 
        = 
        p 
        − 
        q 
       
     
    {\displaystyle \varphi =p-q} 
   
 
  
    
      
        A 
        F 
        G 
       
     
    {\displaystyle AFG} 
   
 
  
    
      
        F 
        C 
        E 
       
     
    {\displaystyle FCE} 
   
 
  
    
      
        cos 
         
        q 
       
     
    {\displaystyle \cos q} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        sin 
         
        θ 
        + 
        sin 
         
        φ 
       
     
    {\displaystyle \sin \theta +\sin \varphi } 
   
 
  
    
      
        2 
        sin 
         
        p 
        cos 
         
        q 
       
     
    {\displaystyle 2\sin p\cos q} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        q 
       
     
    {\displaystyle q} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 
  
    
      
        sin 
         
        θ 
        + 
        sin 
         
        φ 
        = 
        2 
        sin 
         
        
          
            
              1 
              2 
             
           
         
        ( 
        θ 
        + 
        φ 
        ) 
        cos 
         
        
          
            
              1 
              2 
             
           
         
        ( 
        θ 
        − 
        φ 
        ) 
       
     
    {\displaystyle \sin \theta +\sin \varphi =2\sin {\tfrac {1}{2}}(\theta +\varphi )\,\cos {\tfrac {1}{2}}(\theta -\varphi )} 
   
  The sum of sines or cosines of two angles can be converted to a product of sines or cosines of the mean and half the difference of the angles:[ 32] 
  
    
      
        
          
            
              
                sin 
                 
                θ 
                + 
                sin 
                 
                φ 
               
              
                = 
                2 
                sin 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                + 
                φ 
                ) 
                cos 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                − 
                φ 
                ) 
                , 
               
             
            
              
                sin 
                 
                θ 
                − 
                sin 
                 
                φ 
               
              
                = 
                2 
                cos 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                + 
                φ 
                ) 
                sin 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                − 
                φ 
                ) 
                , 
               
             
            
              
                cos 
                 
                θ 
                + 
                cos 
                 
                φ 
               
              
                = 
                2 
                cos 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                + 
                φ 
                ) 
                cos 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                − 
                φ 
                ) 
                , 
               
             
            
              
                cos 
                 
                θ 
                − 
                cos 
                 
                φ 
               
              
                = 
                − 
                2 
                sin 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                + 
                φ 
                ) 
                sin 
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                θ 
                − 
                φ 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin \theta +\sin \varphi &=2\sin {\tfrac {1}{2}}(\theta +\varphi )\,\cos {\tfrac {1}{2}}(\theta -\varphi ),\\[5mu]\sin \theta -\sin \varphi &=2\cos {\tfrac {1}{2}}(\theta +\varphi )\,\sin {\tfrac {1}{2}}(\theta -\varphi ),\\[5mu]\cos \theta +\cos \varphi &=2\cos {\tfrac {1}{2}}(\theta +\varphi )\,\cos {\tfrac {1}{2}}(\theta -\varphi ),\\[5mu]\cos \theta -\cos \varphi &=-2\sin {\tfrac {1}{2}}(\theta +\varphi )\,\sin {\tfrac {1}{2}}(\theta -\varphi ).\end{aligned}}} 
   
 
The sum of the tangent of two angles can be converted to a quotient of the sine of angles divided by the product of the cosines:[ 32] 
  
    
      
        tan 
         
        θ 
        ± 
        tan 
         
        φ 
        = 
        
          
            
              sin 
               
              ( 
              θ 
              ± 
              φ 
              ) 
             
            
              cos 
               
              θ 
              cos 
               
              φ 
             
           
         
        . 
       
     
    {\displaystyle \tan \theta \pm \tan \varphi ={\frac {\sin(\theta \pm \varphi )}{\cos \theta \,\cos \varphi }}.} 
   
 
Charles Hermite  demonstrated the following identity.[ 33] 
  
    
      
        
          a 
          
            1 
           
         
        , 
        … 
        , 
        
          a 
          
            n 
           
         
       
     
    {\displaystyle a_{1},\ldots ,a_{n}} 
   
 complex numbers , no two of which differ by an integer multiple of π . Let
  
    
      
        
          A 
          
            n 
            , 
            k 
           
         
        = 
        
          ∏ 
          
            
              
                
                  
                    1 
                    ≤ 
                    j 
                    ≤ 
                    n 
                   
                 
                
                  
                    j 
                    ≠ 
                    k 
                   
                 
               
             
           
         
        cot 
         
        ( 
        
          a 
          
            k 
           
         
        − 
        
          a 
          
            j 
           
         
        ) 
       
     
    {\displaystyle A_{n,k}=\prod _{\begin{smallmatrix}1\leq j\leq n\\j\neq k\end{smallmatrix}}\cot(a_{k}-a_{j})} 
   
 
(in particular, 
  
    
      
        
          A 
          
            1 
            , 
            1 
           
         
        , 
       
     
    {\displaystyle A_{1,1},} 
   
 empty product , is 1). Then
  
    
      
        cot 
         
        ( 
        z 
        − 
        
          a 
          
            1 
           
         
        ) 
        ⋯ 
        cot 
         
        ( 
        z 
        − 
        
          a 
          
            n 
           
         
        ) 
        = 
        cos 
         
        
          
            
              n 
              π 
             
            2 
           
         
        + 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        
          A 
          
            n 
            , 
            k 
           
         
        cot 
         
        ( 
        z 
        − 
        
          a 
          
            k 
           
         
        ) 
        . 
       
     
    {\displaystyle \cot(z-a_{1})\cdots \cot(z-a_{n})=\cos {\frac {n\pi }{2}}+\sum _{k=1}^{n}A_{n,k}\cot(z-a_{k}).} 
   
 
The simplest non-trivial example is the case n  = 2
  
    
      
        cot 
         
        ( 
        z 
        − 
        
          a 
          
            1 
           
         
        ) 
        cot 
         
        ( 
        z 
        − 
        
          a 
          
            2 
           
         
        ) 
        = 
        − 
        1 
        + 
        cot 
         
        ( 
        
          a 
          
            1 
           
         
        − 
        
          a 
          
            2 
           
         
        ) 
        cot 
         
        ( 
        z 
        − 
        
          a 
          
            1 
           
         
        ) 
        + 
        cot 
         
        ( 
        
          a 
          
            2 
           
         
        − 
        
          a 
          
            1 
           
         
        ) 
        cot 
         
        ( 
        z 
        − 
        
          a 
          
            2 
           
         
        ) 
        . 
       
     
    {\displaystyle \cot(z-a_{1})\cot(z-a_{2})=-1+\cot(a_{1}-a_{2})\cot(z-a_{1})+\cot(a_{2}-a_{1})\cot(z-a_{2}).} 
   
 
Finite products of trigonometric functions 
For coprime  integers n , m 
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        
          ( 
          
            2 
            a 
            + 
            2 
            cos 
             
            
              ( 
              
                
                  
                    
                      2 
                      π 
                      k 
                      m 
                     
                    n 
                   
                 
                + 
                x 
               
              ) 
             
           
          ) 
         
        = 
        2 
        
          ( 
          
            
              T 
              
                n 
               
             
            ( 
            a 
            ) 
            + 
            
              
                ( 
                − 
                1 
                ) 
               
              
                n 
                + 
                m 
               
             
            cos 
             
            ( 
            n 
            x 
            ) 
           
          ) 
         
       
     
    {\displaystyle \prod _{k=1}^{n}\left(2a+2\cos \left({\frac {2\pi km}{n}}+x\right)\right)=2\left(T_{n}(a)+{(-1)}^{n+m}\cos(nx)\right)} 
   
 
where Tn   is the Chebyshev polynomial .
The following relationship holds for the sine function
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
            − 
            1 
           
         
        sin 
         
        
          ( 
          
            
              
                k 
                π 
               
              n 
             
           
          ) 
         
        = 
        
          
            n 
            
              2 
              
                n 
                − 
                1 
               
             
           
         
        . 
       
     
    {\displaystyle \prod _{k=1}^{n-1}\sin \left({\frac {k\pi }{n}}\right)={\frac {n}{2^{n-1}}}.} 
   
 
More generally for an integer n  > 0[ 34] 
  
    
      
        sin 
         
        ( 
        n 
        x 
        ) 
        = 
        
          2 
          
            n 
            − 
            1 
           
         
        
          ∏ 
          
            k 
            = 
            0 
           
          
            n 
            − 
            1 
           
         
        sin 
         
        
          ( 
          
            
              
                k 
                n 
               
             
            π 
            + 
            x 
           
          ) 
         
        = 
        
          2 
          
            n 
            − 
            1 
           
         
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        sin 
         
        
          ( 
          
            
              
                k 
                n 
               
             
            π 
            − 
            x 
           
          ) 
         
        . 
       
     
    {\displaystyle \sin(nx)=2^{n-1}\prod _{k=0}^{n-1}\sin \left({\frac {k}{n}}\pi +x\right)=2^{n-1}\prod _{k=1}^{n}\sin \left({\frac {k}{n}}\pi -x\right).} 
   
 
or written in terms of the chord  function 
  
    
      
        crd 
         
        x 
        ≡ 
        2 
        sin 
         
        
          
            
              1 
              2 
             
           
         
        x 
       
     
    {\textstyle \operatorname {crd} x\equiv 2\sin {\tfrac {1}{2}}x} 
   
 
  
    
      
        crd 
         
        ( 
        n 
        x 
        ) 
        = 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        crd 
         
        
          ( 
          
            
              
                k 
                n 
               
             
            2 
            π 
            − 
            x 
           
          ) 
         
        . 
       
     
    {\displaystyle \operatorname {crd} (nx)=\prod _{k=1}^{n}\operatorname {crd} \left({\frac {k}{n}}2\pi -x\right).} 
   
 
This comes from the factorization of the polynomial  
  
    
      
        
          z 
          
            n 
           
         
        − 
        1 
       
     
    {\textstyle z^{n}-1} 
   
 root of unity ): For any complex z  and an integer n  > 0
  
    
      
        
          z 
          
            n 
           
         
        − 
        1 
        = 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        
          ( 
          
            z 
            − 
            exp 
             
            
              
                ( 
               
             
            
              
                k 
                n 
               
             
            2 
            π 
            i 
            
              
                ) 
               
             
           
          ) 
         
        . 
       
     
    {\displaystyle z^{n}-1=\prod _{k=1}^{n}\left(z-\exp {\Bigl (}{\frac {k}{n}}2\pi i{\Bigr )}\right).} 
   
 
Linear combinations 
For some purposes it is important to know that any linear combination of sine waves of the same period or frequency but different phase shifts  is also a sine wave with the same period or frequency, but a different phase shift. This is useful in sinusoid  data fitting , because the measured or observed data are linearly related to the a  and b  unknowns of the in-phase and quadrature components  basis below, resulting in a simpler Jacobian , compared to that of 
  
    
      
        c 
       
     
    {\displaystyle c} 
   
 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 
Sine and cosine 
The linear combination, or harmonic addition, of sine and cosine waves is equivalent to a single sine wave with a phase shift and scaled amplitude,[ 35] [ 36] 
  
    
      
        a 
        cos 
         
        x 
        + 
        b 
        sin 
         
        x 
        = 
        c 
        cos 
         
        ( 
        x 
        + 
        φ 
        ) 
       
     
    {\displaystyle a\cos x+b\sin x=c\cos(x+\varphi )} 
   
 
where 
  
    
      
        c 
       
     
    {\displaystyle c} 
   
 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 
  
    
      
        
          
            
              
                c 
               
              
                = 
                sgn 
                 
                ( 
                a 
                ) 
                
                  
                    
                      a 
                      
                        2 
                       
                     
                    + 
                    
                      b 
                      
                        2 
                       
                     
                   
                 
                , 
               
             
            
              
                φ 
               
              
                = 
                
                  arctan 
                 
                
                  
                    ( 
                   
                 
                
                  − 
                  b 
                  
                    / 
                   
                  a 
                 
                
                  
                    ) 
                   
                 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}c&=\operatorname {sgn}(a){\sqrt {a^{2}+b^{2}}},\\\varphi &={\arctan }{\bigl (}{-b/a}{\bigr )},\end{aligned}}} 
   
 
given that 
  
    
      
        a 
        ≠ 
        0. 
       
     
    {\displaystyle a\neq 0.} 
   
 
Arbitrary phase shift 
More generally, for arbitrary phase shifts, we have
  
    
      
        a 
        sin 
         
        ( 
        x 
        + 
        
          θ 
          
            a 
           
         
        ) 
        + 
        b 
        sin 
         
        ( 
        x 
        + 
        
          θ 
          
            b 
           
         
        ) 
        = 
        c 
        sin 
         
        ( 
        x 
        + 
        φ 
        ) 
       
     
    {\displaystyle a\sin(x+\theta _{a})+b\sin(x+\theta _{b})=c\sin(x+\varphi )} 
   
 
where 
  
    
      
        c 
       
     
    {\displaystyle c} 
   
 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 
  
    
      
        
          
            
              
                
                  c 
                  
                    2 
                   
                 
               
              
                = 
                
                  a 
                  
                    2 
                   
                 
                + 
                
                  b 
                  
                    2 
                   
                 
                + 
                2 
                a 
                b 
                cos 
                 
                
                  ( 
                  
                    
                      θ 
                      
                        a 
                       
                     
                    − 
                    
                      θ 
                      
                        b 
                       
                     
                   
                  ) 
                 
                , 
               
             
            
              
                tan 
                 
                φ 
               
              
                = 
                
                  
                    
                      a 
                      sin 
                       
                      
                        θ 
                        
                          a 
                         
                       
                      + 
                      b 
                      sin 
                       
                      
                        θ 
                        
                          b 
                         
                       
                     
                    
                      a 
                      cos 
                       
                      
                        θ 
                        
                          a 
                         
                       
                      + 
                      b 
                      cos 
                       
                      
                        θ 
                        
                          b 
                         
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}c^{2}&=a^{2}+b^{2}+2ab\cos \left(\theta _{a}-\theta _{b}\right),\\\tan \varphi &={\frac {a\sin \theta _{a}+b\sin \theta _{b}}{a\cos \theta _{a}+b\cos \theta _{b}}}.\end{aligned}}} 
   
 
More than two sinusoids 
The general case reads[ 36] 
  
    
      
        
          ∑ 
          
            i 
           
         
        
          a 
          
            i 
           
         
        sin 
         
        ( 
        x 
        + 
        
          θ 
          
            i 
           
         
        ) 
        = 
        a 
        sin 
         
        ( 
        x 
        + 
        θ 
        ) 
        , 
       
     
    {\displaystyle \sum _{i}a_{i}\sin(x+\theta _{i})=a\sin(x+\theta ),} 
   
 
  
    
      
        
          a 
          
            2 
           
         
        = 
        
          ∑ 
          
            i 
            , 
            j 
           
         
        
          a 
          
            i 
           
         
        
          a 
          
            j 
           
         
        cos 
         
        ( 
        
          θ 
          
            i 
           
         
        − 
        
          θ 
          
            j 
           
         
        ) 
       
     
    {\displaystyle a^{2}=\sum _{i,j}a_{i}a_{j}\cos(\theta _{i}-\theta _{j})} 
   
 
  
    
      
        tan 
         
        θ 
        = 
        
          
            
              
                ∑ 
                
                  i 
                 
               
              
                a 
                
                  i 
                 
               
              sin 
               
              
                θ 
                
                  i 
                 
               
             
            
              
                ∑ 
                
                  i 
                 
               
              
                a 
                
                  i 
                 
               
              cos 
               
              
                θ 
                
                  i 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \tan \theta ={\frac {\sum _{i}a_{i}\sin \theta _{i}}{\sum _{i}a_{i}\cos \theta _{i}}}.} 
   
 
These identities, named after Joseph Louis Lagrange , are:[ 37] [ 38] [ 39] 
  
    
      
        
          
            
              
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    n 
                   
                 
                sin 
                 
                k 
                θ 
               
              
                = 
                
                  
                    
                      cos 
                       
                      
                        
                          
                            1 
                            2 
                           
                         
                       
                      θ 
                      − 
                      cos 
                       
                      
                        ( 
                        
                          
                            ( 
                            
                              n 
                              + 
                              
                                
                                  
                                    1 
                                    2 
                                   
                                 
                               
                             
                            ) 
                           
                          θ 
                         
                        ) 
                       
                     
                    
                      2 
                      sin 
                       
                      
                        
                          
                            1 
                            2 
                           
                         
                       
                      θ 
                     
                   
                 
               
             
            
              
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                cos 
                 
                k 
                θ 
               
              
                = 
                
                  
                    
                      − 
                      sin 
                       
                      
                        
                          
                            1 
                            2 
                           
                         
                       
                      θ 
                      + 
                      sin 
                       
                      
                        ( 
                        
                          
                            ( 
                            
                              n 
                              + 
                              
                                
                                  
                                    1 
                                    2 
                                   
                                 
                               
                             
                            ) 
                           
                          θ 
                         
                        ) 
                       
                     
                    
                      2 
                      sin 
                       
                      
                        
                          
                            1 
                            2 
                           
                         
                       
                      θ 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sum _{k=0}^{n}\sin k\theta &={\frac {\cos {\tfrac {1}{2}}\theta -\cos \left(\left(n+{\tfrac {1}{2}}\right)\theta \right)}{2\sin {\tfrac {1}{2}}\theta }}\\[5pt]\sum _{k=1}^{n}\cos k\theta &={\frac {-\sin {\tfrac {1}{2}}\theta +\sin \left(\left(n+{\tfrac {1}{2}}\right)\theta \right)}{2\sin {\tfrac {1}{2}}\theta }}\end{aligned}}} 
   
 
  
    
      
        θ 
        ≢ 
        0 
        
          ( 
          mod 
          2 
          π 
          ) 
         
        . 
       
     
    {\displaystyle \theta \not \equiv 0{\pmod {2\pi }}.} 
   
 
A related function is the Dirichlet kernel :
  
    
      
        
          D 
          
            n 
           
         
        ( 
        θ 
        ) 
        = 
        1 
        + 
        2 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        cos 
         
        k 
        θ 
        = 
        
          
            
              sin 
               
              
                ( 
                
                  
                    ( 
                    
                      n 
                      + 
                      
                        
                          
                            1 
                            2 
                           
                         
                       
                     
                    ) 
                   
                  θ 
                 
                ) 
               
             
            
              sin 
               
              
                
                  
                    1 
                    2 
                   
                 
               
              θ 
             
           
         
        . 
       
     
    {\displaystyle D_{n}(\theta )=1+2\sum _{k=1}^{n}\cos k\theta ={\frac {\sin \left(\left(n+{\tfrac {1}{2}}\right)\theta \right)}{\sin {\tfrac {1}{2}}\theta }}.} 
   
 
A similar identity is[ 40] 
  
    
      
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        cos 
         
        ( 
        2 
        k 
        − 
        1 
        ) 
        α 
        = 
        
          
            
              sin 
               
              ( 
              2 
              n 
              α 
              ) 
             
            
              2 
              sin 
               
              α 
             
           
         
        . 
       
     
    {\displaystyle \sum _{k=1}^{n}\cos(2k-1)\alpha ={\frac {\sin(2n\alpha )}{2\sin \alpha }}.} 
   
 
The proof is the following. By using the angle sum and difference identities ,
  
    
      
        sin 
         
        ( 
        A 
        + 
        B 
        ) 
        − 
        sin 
         
        ( 
        A 
        − 
        B 
        ) 
        = 
        2 
        cos 
         
        A 
        sin 
         
        B 
        . 
       
     
    {\displaystyle \sin(A+B)-\sin(A-B)=2\cos A\sin B.} 
   
 
  
    
      
        2 
        sin 
         
        α 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        cos 
         
        ( 
        2 
        k 
        − 
        1 
        ) 
        α 
        = 
        2 
        sin 
         
        α 
        cos 
         
        α 
        + 
        2 
        sin 
         
        α 
        cos 
         
        3 
        α 
        + 
        2 
        sin 
         
        α 
        cos 
         
        5 
        α 
        + 
        ⋯ 
        + 
        2 
        sin 
         
        α 
        cos 
         
        ( 
        2 
        n 
        − 
        1 
        ) 
        α 
       
     
    {\displaystyle 2\sin \alpha \sum _{k=1}^{n}\cos(2k-1)\alpha =2\sin \alpha \cos \alpha +2\sin \alpha \cos 3\alpha +2\sin \alpha \cos 5\alpha +\cdots +2\sin \alpha \cos(2n-1)\alpha } 
   
 
  
    
      
        
          
            
              
                2 
                sin 
                 
                α 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                cos 
                 
                ( 
                2 
                k 
                − 
                1 
                ) 
                α 
               
             
            
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                sin 
                 
                ( 
                2 
                k 
                α 
                ) 
                − 
                sin 
                 
                ( 
                2 
                ( 
                k 
                − 
                1 
                ) 
                α 
                ) 
                ) 
               
             
            
              
                = 
                ( 
                sin 
                 
                2 
                α 
                − 
                sin 
                 
                0 
                ) 
                + 
                ( 
                sin 
                 
                4 
                α 
                − 
                sin 
                 
                2 
                α 
                ) 
                + 
                ( 
                sin 
                 
                6 
                α 
                − 
                sin 
                 
                4 
                α 
                ) 
                + 
                ⋯ 
                + 
                ( 
                sin 
                 
                ( 
                2 
                n 
                α 
                ) 
                − 
                sin 
                 
                ( 
                2 
                ( 
                n 
                − 
                1 
                ) 
                α 
                ) 
                ) 
               
             
            
              
                = 
                sin 
                 
                ( 
                2 
                n 
                α 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&2\sin \alpha \sum _{k=1}^{n}\cos(2k-1)\alpha \\&\quad =\sum _{k=1}^{n}(\sin(2k\alpha )-\sin(2(k-1)\alpha ))\\&\quad =(\sin 2\alpha -\sin 0)+(\sin 4\alpha -\sin 2\alpha )+(\sin 6\alpha -\sin 4\alpha )+\cdots +(\sin(2n\alpha )-\sin(2(n-1)\alpha ))\\&\quad =\sin(2n\alpha ).\end{aligned}}} 
   
 
So, dividing this formula with 
  
    
      
        2 
        sin 
         
        α 
       
     
    {\displaystyle 2\sin \alpha } 
   
 
If 
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)} 
   
 linear fractional transformation 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            
              ( 
              cos 
               
              α 
              ) 
              x 
              − 
              sin 
               
              α 
             
            
              ( 
              sin 
               
              α 
              ) 
              x 
              + 
              cos 
               
              α 
             
           
         
        , 
       
     
    {\displaystyle f(x)={\frac {(\cos \alpha )x-\sin \alpha }{(\sin \alpha )x+\cos \alpha }},} 
   
 
  
    
      
        g 
        ( 
        x 
        ) 
        = 
        
          
            
              ( 
              cos 
               
              β 
              ) 
              x 
              − 
              sin 
               
              β 
             
            
              ( 
              sin 
               
              β 
              ) 
              x 
              + 
              cos 
               
              β 
             
           
         
        , 
       
     
    {\displaystyle g(x)={\frac {(\cos \beta )x-\sin \beta }{(\sin \beta )x+\cos \beta }},} 
   
 
  
    
      
        f 
        
          
            ( 
           
         
        g 
        ( 
        x 
        ) 
        
          
            ) 
           
         
        = 
        g 
        
          
            ( 
           
         
        f 
        ( 
        x 
        ) 
        
          
            ) 
           
         
        = 
        
          
            
              
                
                  ( 
                 
               
              cos 
               
              ( 
              α 
              + 
              β 
              ) 
              
                
                  ) 
                 
               
              x 
              − 
              sin 
               
              ( 
              α 
              + 
              β 
              ) 
             
            
              
                
                  ( 
                 
               
              sin 
               
              ( 
              α 
              + 
              β 
              ) 
              
                
                  ) 
                 
               
              x 
              + 
              cos 
               
              ( 
              α 
              + 
              β 
              ) 
             
           
         
        . 
       
     
    {\displaystyle f{\big (}g(x){\big )}=g{\big (}f(x){\big )}={\frac {{\big (}\cos(\alpha +\beta ){\big )}x-\sin(\alpha +\beta )}{{\big (}\sin(\alpha +\beta ){\big )}x+\cos(\alpha +\beta )}}.} 
   
 
More tersely stated, if for all 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        
          f 
          
            α 
           
         
       
     
    {\displaystyle f_{\alpha }} 
   
 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
 
  
    
      
        
          f 
          
            α 
           
         
        ∘ 
        
          f 
          
            β 
           
         
        = 
        
          f 
          
            α 
            + 
            β 
           
         
        . 
       
     
    {\displaystyle f_{\alpha }\circ f_{\beta }=f_{\alpha +\beta }.} 
   
 
If 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)} 
   
 
  
    
      
        − 
        α 
        . 
       
     
    {\displaystyle -\alpha .} 
   
 
Relation to the complex exponential function 
Euler's formula states that, for any real number x :[ 41] 
  
    
      
        
          e 
          
            i 
            x 
           
         
        = 
        cos 
         
        x 
        + 
        i 
        sin 
         
        x 
        , 
       
     
    {\displaystyle e^{ix}=\cos x+i\sin x,} 
   
 i  is the imaginary unit . Substituting −x  for x  gives us:
  
    
      
        
          e 
          
            − 
            i 
            x 
           
         
        = 
        cos 
         
        ( 
        − 
        x 
        ) 
        + 
        i 
        sin 
         
        ( 
        − 
        x 
        ) 
        = 
        cos 
         
        x 
        − 
        i 
        sin 
         
        x 
        . 
       
     
    {\displaystyle e^{-ix}=\cos(-x)+i\sin(-x)=\cos x-i\sin x.} 
   
 
These two equations can be used to solve for cosine and sine in terms of the exponential function .  Specifically,[ 42] [ 43] 
  
    
      
        cos 
         
        x 
        = 
        
          
            
              
                e 
                
                  i 
                  x 
                 
               
              + 
              
                e 
                
                  − 
                  i 
                  x 
                 
               
             
            2 
           
         
       
     
    {\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}}} 
   
 
  
    
      
        sin 
         
        x 
        = 
        
          
            
              
                e 
                
                  i 
                  x 
                 
               
              − 
              
                e 
                
                  − 
                  i 
                  x 
                 
               
             
            
              2 
              i 
             
           
         
       
     
    {\displaystyle \sin x={\frac {e^{ix}-e^{-ix}}{2i}}} 
   
 
These formulae are useful for proving many other trigonometric identities.  For example, that
e i (θ +φ )e iθ e iφ 
cos(θ  + φ ) + i  sin(θ  + φ ) = (cos θ  + i  sin θ ) (cos φ  + i  sin φ ) = (cos θ  cos φ  − sin θ  sin φ ) + i  (cos θ  sin φ  + sin θ  cos φ ) .
That the real part of the left hand side equals the real part of the right hand side is an angle addition formula for cosine.  The equality of the imaginary parts gives an angle addition formula for sine.
The following table expresses the trigonometric functions and their inverses in terms of the exponential function and the complex logarithm .
Function
 
Inverse function[ 44]   
  
    
      
        sin 
         
        θ 
        = 
        
          
            
              
                e 
                
                  i 
                  θ 
                 
               
              − 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
            
              2 
              i 
             
           
         
       
     
    {\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}} 
   
 
  
    
      
        arcsin 
         
        x 
        = 
        − 
        i 
        ln 
         
        
          ( 
          
            i 
            x 
            + 
            
              
                1 
                − 
                
                  x 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \arcsin x=-i\,\ln \left(ix+{\sqrt {1-x^{2}}}\right)} 
   
  
  
    
      
        cos 
         
        θ 
        = 
        
          
            
              
                e 
                
                  i 
                  θ 
                 
               
              + 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
            2 
           
         
       
     
    {\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}} 
   
 
  
    
      
        arccos 
         
        x 
        = 
        − 
        i 
        ln 
         
        
          ( 
          
            x 
            + 
            
              
                
                  x 
                  
                    2 
                   
                 
                − 
                1 
               
             
           
          ) 
         
       
     
    {\displaystyle \arccos x=-i\ln \left(x+{\sqrt {x^{2}-1}}\right)} 
   
  
  
    
      
        tan 
         
        θ 
        = 
        − 
        i 
        
          
            
              
                e 
                
                  i 
                  θ 
                 
               
              − 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
            
              
                e 
                
                  i 
                  θ 
                 
               
              + 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
           
         
       
     
    {\displaystyle \tan \theta =-i\,{\frac {e^{i\theta }-e^{-i\theta }}{e^{i\theta }+e^{-i\theta }}}} 
   
 
  
    
      
        arctan 
         
        x 
        = 
        
          
            i 
            2 
           
         
        ln 
         
        
          ( 
          
            
              
                i 
                + 
                x 
               
              
                i 
                − 
                x 
               
             
           
          ) 
         
       
     
    {\displaystyle \arctan x={\frac {i}{2}}\ln \left({\frac {i+x}{i-x}}\right)} 
   
  
  
    
      
        csc 
         
        θ 
        = 
        
          
            
              2 
              i 
             
            
              
                e 
                
                  i 
                  θ 
                 
               
              − 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
           
         
       
     
    {\displaystyle \csc \theta ={\frac {2i}{e^{i\theta }-e^{-i\theta }}}} 
   
 
  
    
      
        arccsc 
         
        x 
        = 
        − 
        i 
        ln 
         
        
          ( 
          
            
              
                i 
                x 
               
             
            + 
            
              
                1 
                − 
                
                  
                    1 
                    
                      x 
                      
                        2 
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arccsc} x=-i\,\ln \left({\frac {i}{x}}+{\sqrt {1-{\frac {1}{x^{2}}}}}\right)} 
   
  
  
    
      
        sec 
         
        θ 
        = 
        
          
            2 
            
              
                e 
                
                  i 
                  θ 
                 
               
              + 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
           
         
       
     
    {\displaystyle \sec \theta ={\frac {2}{e^{i\theta }+e^{-i\theta }}}} 
   
 
  
    
      
        arcsec 
         
        x 
        = 
        − 
        i 
        ln 
         
        
          ( 
          
            
              
                1 
                x 
               
             
            + 
            i 
            
              
                1 
                − 
                
                  
                    1 
                    
                      x 
                      
                        2 
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arcsec} x=-i\,\ln \left({\frac {1}{x}}+i{\sqrt {1-{\frac {1}{x^{2}}}}}\right)} 
   
  
  
    
      
        cot 
         
        θ 
        = 
        i 
        
          
            
              
                e 
                
                  i 
                  θ 
                 
               
              + 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
            
              
                e 
                
                  i 
                  θ 
                 
               
              − 
              
                e 
                
                  − 
                  i 
                  θ 
                 
               
             
           
         
       
     
    {\displaystyle \cot \theta =i\,{\frac {e^{i\theta }+e^{-i\theta }}{e^{i\theta }-e^{-i\theta }}}} 
   
 
  
    
      
        arccot 
         
        x 
        = 
        
          
            i 
            2 
           
         
        ln 
         
        
          ( 
          
            
              
                x 
                − 
                i 
               
              
                x 
                + 
                i 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arccot} x={\frac {i}{2}}\ln \left({\frac {x-i}{x+i}}\right)} 
   
  
  
    
      
        cis 
         
        θ 
        = 
        
          e 
          
            i 
            θ 
           
         
       
     
    {\displaystyle \operatorname {cis} \theta =e^{i\theta }} 
   
 
  
    
      
        arccis 
         
        x 
        = 
        − 
        i 
        ln 
         
        x 
       
     
    {\displaystyle \operatorname {arccis} x=-i\ln x} 
   
  
Relation to complex hyperbolic functions 
Trigonometric functions may be deduced from hyperbolic functions  with complex  arguments.  The formulae for the relations are shown below[ 45] [ 46] 
  
    
      
        
          
            
              
                sin 
                 
                x 
               
              
                = 
                − 
                i 
                sinh 
                 
                ( 
                i 
                x 
                ) 
               
             
            
              
                cos 
                 
                x 
               
              
                = 
                cosh 
                 
                ( 
                i 
                x 
                ) 
               
             
            
              
                tan 
                 
                x 
               
              
                = 
                − 
                i 
                tanh 
                 
                ( 
                i 
                x 
                ) 
               
             
            
              
                cot 
                 
                x 
               
              
                = 
                i 
                coth 
                 
                ( 
                i 
                x 
                ) 
               
             
            
              
                sec 
                 
                x 
               
              
                = 
                sech 
                 
                ( 
                i 
                x 
                ) 
               
             
            
              
                csc 
                 
                x 
               
              
                = 
                i 
                csch 
                 
                ( 
                i 
                x 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin x&=-i\sinh(ix)\\\cos x&=\cosh(ix)\\\tan x&=-i\tanh(ix)\\\cot x&=i\coth(ix)\\\sec x&=\operatorname {sech} (ix)\\\csc x&=i\operatorname {csch} (ix)\\\end{aligned}}} 
   
 
Series expansion 
When using a power series  expansion to define trigonometric functions, the following identities are obtained:[ 47] 
  
    
      
        sin 
         
        x 
        = 
        x 
        − 
        
          
            
              x 
              
                3 
               
             
            
              3 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                5 
               
             
            
              5 
              ! 
             
           
         
        − 
        
          
            
              x 
              
                7 
               
             
            
              7 
              ! 
             
           
         
        + 
        ⋯ 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
              
                x 
                
                  2 
                  n 
                  + 
                  1 
                 
               
             
            
              ( 
              2 
              n 
              + 
              1 
              ) 
              ! 
             
           
         
        , 
       
     
    {\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}},} 
   
 
  
    
      
        cos 
         
        x 
        = 
        1 
        − 
        
          
            
              x 
              
                2 
               
             
            
              2 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        − 
        
          
            
              x 
              
                6 
               
             
            
              6 
              ! 
             
           
         
        + 
        ⋯ 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
              
                x 
                
                  2 
                  n 
                 
               
             
            
              ( 
              2 
              n 
              ) 
              ! 
             
           
         
        . 
       
     
    {\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}.} 
   
 
For applications to special functions , the following infinite product  formulae for trigonometric functions are useful:[ 48] [ 49] 
  
    
      
        
          
            
              
                sin 
                 
                x 
               
              
                = 
                x 
                
                  ∏ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    − 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          
                            π 
                            
                              2 
                             
                           
                          
                            n 
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ) 
                 
                , 
               
              
                cos 
                 
                x 
               
              
                = 
                
                  ∏ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    − 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          
                            π 
                            
                              2 
                             
                           
                          
                            ( 
                            
                              n 
                              − 
                              
                                
                                  1 
                                  2 
                                 
                               
                             
                            ) 
                           
                          
                            
                              
                                
                                  
                                    ) 
                                   
                                 
                               
                             
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ) 
                 
                , 
               
             
            
              
                sinh 
                 
                x 
               
              
                = 
                x 
                
                  ∏ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          
                            π 
                            
                              2 
                             
                           
                          
                            n 
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ) 
                 
                , 
               
              
                cosh 
                 
                x 
               
              
                = 
                
                  ∏ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ( 
                  
                    1 
                    + 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        
                          
                            π 
                            
                              2 
                             
                           
                          
                            ( 
                            
                              n 
                              − 
                              
                                
                                  1 
                                  2 
                                 
                               
                             
                            ) 
                           
                          
                            
                              
                                
                                  
                                    ) 
                                   
                                 
                               
                             
                            
                              2 
                             
                           
                         
                       
                     
                   
                  ) 
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin x&=x\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{\pi ^{2}n^{2}}}\right),&\cos x&=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{\pi ^{2}\left(n-{\frac {1}{2}}\right)\!{\vphantom {)}}^{2}}}\right),\\[10mu]\sinh x&=x\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{\pi ^{2}n^{2}}}\right),&\cosh x&=\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{\pi ^{2}\left(n-{\frac {1}{2}}\right)\!{\vphantom {)}}^{2}}}\right).\end{aligned}}} 
   
 
Inverse trigonometric functions 
The following identities give the result of composing a trigonometric function with an inverse trigonometric function.[ 50] 
  
    
      
        
          
            
              
                sin 
                 
                ( 
                arcsin 
                 
                x 
                ) 
               
              
                = 
                x 
               
              
                cos 
                 
                ( 
                arcsin 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    − 
                    
                      x 
                      
                        2 
                       
                     
                   
                 
               
              
                tan 
                 
                ( 
                arcsin 
                 
                x 
                ) 
               
              
                = 
                
                  
                    x 
                    
                      1 
                      − 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                sin 
                 
                ( 
                arccos 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    − 
                    
                      x 
                      
                        2 
                       
                     
                   
                 
               
              
                cos 
                 
                ( 
                arccos 
                 
                x 
                ) 
               
              
                = 
                x 
               
              
                tan 
                 
                ( 
                arccos 
                 
                x 
                ) 
               
              
                = 
                
                  
                    
                      1 
                      − 
                      
                        x 
                        
                          2 
                         
                       
                     
                    x 
                   
                 
               
             
            
              
                sin 
                 
                ( 
                arctan 
                 
                x 
                ) 
               
              
                = 
                
                  
                    x 
                    
                      1 
                      + 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
               
              
                cos 
                 
                ( 
                arctan 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    
                      1 
                      + 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
               
              
                tan 
                 
                ( 
                arctan 
                 
                x 
                ) 
               
              
                = 
                x 
               
             
            
              
                sin 
                 
                ( 
                arccsc 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    x 
                   
                 
               
              
                cos 
                 
                ( 
                arccsc 
                 
                x 
                ) 
               
              
                = 
                
                  
                    
                      
                        x 
                        
                          2 
                         
                       
                      − 
                      1 
                     
                    x 
                   
                 
               
              
                tan 
                 
                ( 
                arccsc 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    
                      
                        x 
                        
                          2 
                         
                       
                      − 
                      1 
                     
                   
                 
               
             
            
              
                sin 
                 
                ( 
                arcsec 
                 
                x 
                ) 
               
              
                = 
                
                  
                    
                      
                        x 
                        
                          2 
                         
                       
                      − 
                      1 
                     
                    x 
                   
                 
               
              
                cos 
                 
                ( 
                arcsec 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    x 
                   
                 
               
              
                tan 
                 
                ( 
                arcsec 
                 
                x 
                ) 
               
              
                = 
                
                  
                    
                      x 
                      
                        2 
                       
                     
                    − 
                    1 
                   
                 
               
             
            
              
                sin 
                 
                ( 
                arccot 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    
                      1 
                      + 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
               
              
                cos 
                 
                ( 
                arccot 
                 
                x 
                ) 
               
              
                = 
                
                  
                    x 
                    
                      1 
                      + 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
               
              
                tan 
                 
                ( 
                arccot 
                 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    x 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin(\arcsin x)&=x&\cos(\arcsin x)&={\sqrt {1-x^{2}}}&\tan(\arcsin x)&={\frac {x}{\sqrt {1-x^{2}}}}\\\sin(\arccos x)&={\sqrt {1-x^{2}}}&\cos(\arccos x)&=x&\tan(\arccos x)&={\frac {\sqrt {1-x^{2}}}{x}}\\\sin(\arctan x)&={\frac {x}{\sqrt {1+x^{2}}}}&\cos(\arctan x)&={\frac {1}{\sqrt {1+x^{2}}}}&\tan(\arctan x)&=x\\\sin(\operatorname {arccsc} x)&={\frac {1}{x}}&\cos(\operatorname {arccsc} x)&={\frac {\sqrt {x^{2}-1}}{x}}&\tan(\operatorname {arccsc} x)&={\frac {1}{\sqrt {x^{2}-1}}}\\\sin(\operatorname {arcsec} x)&={\frac {\sqrt {x^{2}-1}}{x}}&\cos(\operatorname {arcsec} x)&={\frac {1}{x}}&\tan(\operatorname {arcsec} x)&={\sqrt {x^{2}-1}}\\\sin(\operatorname {arccot} x)&={\frac {1}{\sqrt {1+x^{2}}}}&\cos(\operatorname {arccot} x)&={\frac {x}{\sqrt {1+x^{2}}}}&\tan(\operatorname {arccot} x)&={\frac {1}{x}}\\\end{aligned}}} 
   
 
Taking the multiplicative inverse  of both sides of the each equation above results in the equations for 
  
    
      
        csc 
        = 
        
          
            1 
            sin 
           
         
        , 
        sec 
        = 
        
          
            1 
            cos 
           
         
        , 
        
           and  
         
        cot 
        = 
        
          
            1 
            tan 
           
         
        . 
       
     
    {\displaystyle \csc ={\frac {1}{\sin }},\;\sec ={\frac {1}{\cos }},{\text{ and }}\cot ={\frac {1}{\tan }}.} 
   
 
  
    
      
        cot 
         
        ( 
        arcsin 
         
        x 
        ) 
       
     
    {\displaystyle \cot(\arcsin x)} 
   
 
  
    
      
        cot 
         
        ( 
        arcsin 
         
        x 
        ) 
        = 
        
          
            1 
            
              tan 
               
              ( 
              arcsin 
               
              x 
              ) 
             
           
         
        = 
        
          
            1 
            
              x 
              
                1 
                − 
                
                  x 
                  
                    2 
                   
                 
               
             
           
         
        = 
        
          
            
              1 
              − 
              
                x 
                
                  2 
                 
               
             
            x 
           
         
       
     
    {\displaystyle \cot(\arcsin x)={\frac {1}{\tan(\arcsin x)}}={\frac {1}{\frac {x}{\sqrt {1-x^{2}}}}}={\frac {\sqrt {1-x^{2}}}{x}}} 
   
 
  
    
      
        csc 
         
        ( 
        arccos 
         
        x 
        ) 
       
     
    {\displaystyle \csc(\arccos x)} 
   
 
  
    
      
        sec 
         
        ( 
        arccos 
         
        x 
        ) 
       
     
    {\displaystyle \sec(\arccos x)} 
   
 
  
    
      
        csc 
         
        ( 
        arccos 
         
        x 
        ) 
        = 
        
          
            1 
            
              sin 
               
              ( 
              arccos 
               
              x 
              ) 
             
           
         
        = 
        
          
            1 
            
              1 
              − 
              
                x 
                
                  2 
                 
               
             
           
         
        
           and  
         
        sec 
         
        ( 
        arccos 
         
        x 
        ) 
        = 
        
          
            1 
            
              cos 
               
              ( 
              arccos 
               
              x 
              ) 
             
           
         
        = 
        
          
            1 
            x 
           
         
        . 
       
     
    {\displaystyle \csc(\arccos x)={\frac {1}{\sin(\arccos x)}}={\frac {1}{\sqrt {1-x^{2}}}}\qquad {\text{ and }}\quad \sec(\arccos x)={\frac {1}{\cos(\arccos x)}}={\frac {1}{x}}.} 
   
 
The following identities are implied by the reflection identities . They hold whenever 
  
    
      
        x 
        , 
        r 
        , 
        s 
        , 
        − 
        x 
        , 
        − 
        r 
        , 
       
     
    {\displaystyle x,r,s,-x,-r,} 
   
 
  
    
      
        − 
        s 
       
     
    {\displaystyle -s} 
   
 
  
    
      
        
          
            
              
                
                  
                    π 
                    2 
                   
                 
                  
               
              
                = 
                  
                arcsin 
                 
                ( 
                x 
                ) 
               
              
                + 
                arccos 
                 
                ( 
                x 
                ) 
                  
               
              
                = 
                  
                arctan 
                 
                ( 
                r 
                ) 
               
              
                + 
                arccot 
                 
                ( 
                r 
                ) 
                  
               
              
                = 
                  
                arcsec 
                 
                ( 
                s 
                ) 
               
              
                + 
                arccsc 
                 
                ( 
                s 
                ) 
               
             
            
              
                π 
                  
               
              
                = 
                  
                arccos 
                 
                ( 
                x 
                ) 
               
              
                + 
                arccos 
                 
                ( 
                − 
                x 
                ) 
                  
               
              
                = 
                  
                arccot 
                 
                ( 
                r 
                ) 
               
              
                + 
                arccot 
                 
                ( 
                − 
                r 
                ) 
                  
               
              
                = 
                  
                arcsec 
                 
                ( 
                s 
                ) 
               
              
                + 
                arcsec 
                 
                ( 
                − 
                s 
                ) 
               
             
            
              
                0 
                  
               
              
                = 
                  
                arcsin 
                 
                ( 
                x 
                ) 
               
              
                + 
                arcsin 
                 
                ( 
                − 
                x 
                ) 
                  
               
              
                = 
                  
                arctan 
                 
                ( 
                r 
                ) 
               
              
                + 
                arctan 
                 
                ( 
                − 
                r 
                ) 
                  
               
              
                = 
                  
                arccsc 
                 
                ( 
                s 
                ) 
               
              
                + 
                arccsc 
                 
                ( 
                − 
                s 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{alignedat}{9}{\frac {\pi }{2}}~&=~\arcsin(x)&&+\arccos(x)~&&=~\arctan(r)&&+\operatorname {arccot}(r)~&&=~\operatorname {arcsec}(s)&&+\operatorname {arccsc}(s)\\[0.4ex]\pi ~&=~\arccos(x)&&+\arccos(-x)~&&=~\operatorname {arccot}(r)&&+\operatorname {arccot}(-r)~&&=~\operatorname {arcsec}(s)&&+\operatorname {arcsec}(-s)\\[0.4ex]0~&=~\arcsin(x)&&+\arcsin(-x)~&&=~\arctan(r)&&+\arctan(-r)~&&=~\operatorname {arccsc}(s)&&+\operatorname {arccsc}(-s)\\[1.0ex]\end{alignedat}}} 
   
 
Also,[ 51] 
  
    
      
        
          
            
              
                arctan 
                 
                x 
                + 
                arctan 
                 
                
                  
                    
                      1 
                      x 
                     
                   
                 
               
              
                = 
                
                  
                    { 
                    
                      
                        
                          
                            
                              π 
                              2 
                             
                           
                          , 
                         
                        
                          
                            if  
                           
                          x 
                          > 
                          0 
                         
                       
                      
                        
                          − 
                          
                            
                              π 
                              2 
                             
                           
                          , 
                         
                        
                          
                            if  
                           
                          x 
                          < 
                          0 
                         
                       
                     
                     
                 
               
             
            
              
                arccot 
                 
                x 
                + 
                arccot 
                 
                
                  
                    
                      1 
                      x 
                     
                   
                 
               
              
                = 
                
                  
                    { 
                    
                      
                        
                          
                            
                              π 
                              2 
                             
                           
                          , 
                         
                        
                          
                            if  
                           
                          x 
                          > 
                          0 
                         
                       
                      
                        
                          
                            
                              
                                3 
                                π 
                               
                              2 
                             
                           
                          , 
                         
                        
                          
                            if  
                           
                          x 
                          < 
                          0 
                         
                       
                     
                     
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\arctan x+\arctan {\dfrac {1}{x}}&={\begin{cases}{\frac {\pi }{2}},&{\text{if }}x>0\\-{\frac {\pi }{2}},&{\text{if }}x<0\end{cases}}\\\operatorname {arccot} x+\operatorname {arccot} {\dfrac {1}{x}}&={\begin{cases}{\frac {\pi }{2}},&{\text{if }}x>0\\{\frac {3\pi }{2}},&{\text{if }}x<0\end{cases}}\\\end{aligned}}} 
   
 
  
    
      
        arccos 
         
        
          
            1 
            x 
           
         
        = 
        arcsec 
         
        x 
        
           and  
         
        arcsec 
         
        
          
            1 
            x 
           
         
        = 
        arccos 
         
        x 
       
     
    {\displaystyle \arccos {\frac {1}{x}}=\operatorname {arcsec} x\qquad {\text{ and }}\qquad \operatorname {arcsec} {\frac {1}{x}}=\arccos x} 
   
 
  
    
      
        arcsin 
         
        
          
            1 
            x 
           
         
        = 
        arccsc 
         
        x 
        
           and  
         
        arccsc 
         
        
          
            1 
            x 
           
         
        = 
        arcsin 
         
        x 
       
     
    {\displaystyle \arcsin {\frac {1}{x}}=\operatorname {arccsc} x\qquad {\text{ and }}\qquad \operatorname {arccsc} {\frac {1}{x}}=\arcsin x} 
   
 
The arctangent  function can be expanded as a series:[ 52] 
  
    
      
        arctan 
         
        ( 
        n 
        x 
        ) 
        = 
        
          ∑ 
          
            m 
            = 
            1 
           
          
            n 
           
         
        arctan 
         
        
          
            x 
            
              1 
              + 
              ( 
              m 
              − 
              1 
              ) 
              m 
              
                x 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle \arctan(nx)=\sum _{m=1}^{n}\arctan {\frac {x}{1+(m-1)mx^{2}}}} 
   
 
Identities without variables 
In terms of the arctangent  function we have[ 51] 
  
    
      
        arctan 
         
        
          
            1 
            2 
           
         
        = 
        arctan 
         
        
          
            1 
            3 
           
         
        + 
        arctan 
         
        
          
            1 
            7 
           
         
        . 
       
     
    {\displaystyle \arctan {\frac {1}{2}}=\arctan {\frac {1}{3}}+\arctan {\frac {1}{7}}.} 
   
 
The curious identity known as Morrie's law ,
  
    
      
        cos 
         
        
          20 
          
            ∘ 
           
         
        ⋅ 
        cos 
         
        
          40 
          
            ∘ 
           
         
        ⋅ 
        cos 
         
        
          80 
          
            ∘ 
           
         
        = 
        
          
            1 
            8 
           
         
        , 
       
     
    {\displaystyle \cos 20^{\circ }\cdot \cos 40^{\circ }\cdot \cos 80^{\circ }={\frac {1}{8}},} 
   
 
is a special case of an identity that contains one variable:
  
    
      
        
          ∏ 
          
            j 
            = 
            0 
           
          
            k 
            − 
            1 
           
         
        cos 
         
        
          ( 
          
            
              2 
              
                j 
               
             
            x 
           
          ) 
         
        = 
        
          
            
              sin 
               
              
                ( 
                
                  
                    2 
                    
                      k 
                     
                   
                  x 
                 
                ) 
               
             
            
              
                2 
                
                  k 
                 
               
              sin 
               
              x 
             
           
         
        . 
       
     
    {\displaystyle \prod _{j=0}^{k-1}\cos \left(2^{j}x\right)={\frac {\sin \left(2^{k}x\right)}{2^{k}\sin x}}.} 
   
 
Similarly,
  
    
      
        sin 
         
        
          20 
          
            ∘ 
           
         
        ⋅ 
        sin 
         
        
          40 
          
            ∘ 
           
         
        ⋅ 
        sin 
         
        
          80 
          
            ∘ 
           
         
        = 
        
          
            
              3 
             
            8 
           
         
       
     
    {\displaystyle \sin 20^{\circ }\cdot \sin 40^{\circ }\cdot \sin 80^{\circ }={\frac {\sqrt {3}}{8}}} 
   
 
  
    
      
        x 
        = 
        
          20 
          
            ∘ 
           
         
       
     
    {\displaystyle x=20^{\circ }} 
   
 
  
    
      
        sin 
         
        x 
        ⋅ 
        sin 
         
        
          ( 
          
            
              60 
              
                ∘ 
               
             
            − 
            x 
           
          ) 
         
        ⋅ 
        sin 
         
        
          ( 
          
            
              60 
              
                ∘ 
               
             
            + 
            x 
           
          ) 
         
        = 
        
          
            
              sin 
               
              3 
              x 
             
            4 
           
         
        . 
       
     
    {\displaystyle \sin x\cdot \sin \left(60^{\circ }-x\right)\cdot \sin \left(60^{\circ }+x\right)={\frac {\sin 3x}{4}}.} 
   
 
For the case 
  
    
      
        x 
        = 
        
          15 
          
            ∘ 
           
         
       
     
    {\displaystyle x=15^{\circ }} 
   
 
  
    
      
        
          
            
              
                sin 
                 
                
                  15 
                  
                    ∘ 
                   
                 
                ⋅ 
                sin 
                 
                
                  45 
                  
                    ∘ 
                   
                 
                ⋅ 
                sin 
                 
                
                  75 
                  
                    ∘ 
                   
                 
               
              
                = 
                
                  
                    
                      2 
                     
                    8 
                   
                 
                , 
               
             
            
              
                sin 
                 
                
                  15 
                  
                    ∘ 
                   
                 
                ⋅ 
                sin 
                 
                
                  75 
                  
                    ∘ 
                   
                 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sin 15^{\circ }\cdot \sin 45^{\circ }\cdot \sin 75^{\circ }&={\frac {\sqrt {2}}{8}},\\\sin 15^{\circ }\cdot \sin 75^{\circ }&={\frac {1}{4}}.\end{aligned}}} 
   
 
For the case 
  
    
      
        x 
        = 
        
          10 
          
            ∘ 
           
         
       
     
    {\displaystyle x=10^{\circ }} 
   
 
  
    
      
        sin 
         
        
          10 
          
            ∘ 
           
         
        ⋅ 
        sin 
         
        
          50 
          
            ∘ 
           
         
        ⋅ 
        sin 
         
        
          70 
          
            ∘ 
           
         
        = 
        
          
            1 
            8 
           
         
        . 
       
     
    {\displaystyle \sin 10^{\circ }\cdot \sin 50^{\circ }\cdot \sin 70^{\circ }={\frac {1}{8}}.} 
   
 
The same cosine identity is
  
    
      
        cos 
         
        x 
        ⋅ 
        cos 
         
        
          ( 
          
            
              60 
              
                ∘ 
               
             
            − 
            x 
           
          ) 
         
        ⋅ 
        cos 
         
        
          ( 
          
            
              60 
              
                ∘ 
               
             
            + 
            x 
           
          ) 
         
        = 
        
          
            
              cos 
               
              3 
              x 
             
            4 
           
         
        . 
       
     
    {\displaystyle \cos x\cdot \cos \left(60^{\circ }-x\right)\cdot \cos \left(60^{\circ }+x\right)={\frac {\cos 3x}{4}}.} 
   
 
Similarly,
  
    
      
        
          
            
              
                cos 
                 
                
                  10 
                  
                    ∘ 
                   
                 
                ⋅ 
                cos 
                 
                
                  50 
                  
                    ∘ 
                   
                 
                ⋅ 
                cos 
                 
                
                  70 
                  
                    ∘ 
                   
                 
               
              
                = 
                
                  
                    
                      3 
                     
                    8 
                   
                 
                , 
               
             
            
              
                cos 
                 
                
                  15 
                  
                    ∘ 
                   
                 
                ⋅ 
                cos 
                 
                
                  45 
                  
                    ∘ 
                   
                 
                ⋅ 
                cos 
                 
                
                  75 
                  
                    ∘ 
                   
                 
               
              
                = 
                
                  
                    
                      2 
                     
                    8 
                   
                 
                , 
               
             
            
              
                cos 
                 
                
                  15 
                  
                    ∘ 
                   
                 
                ⋅ 
                cos 
                 
                
                  75 
                  
                    ∘ 
                   
                 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cos 10^{\circ }\cdot \cos 50^{\circ }\cdot \cos 70^{\circ }&={\frac {\sqrt {3}}{8}},\\\cos 15^{\circ }\cdot \cos 45^{\circ }\cdot \cos 75^{\circ }&={\frac {\sqrt {2}}{8}},\\\cos 15^{\circ }\cdot \cos 75^{\circ }&={\frac {1}{4}}.\end{aligned}}} 
   
 
Similarly,
  
    
      
        
          
            
              
                tan 
                 
                
                  50 
                  
                    ∘ 
                   
                 
                ⋅ 
                tan 
                 
                
                  60 
                  
                    ∘ 
                   
                 
                ⋅ 
                tan 
                 
                
                  70 
                  
                    ∘ 
                   
                 
               
              
                = 
                tan 
                 
                
                  80 
                  
                    ∘ 
                   
                 
                , 
               
             
            
              
                tan 
                 
                
                  40 
                  
                    ∘ 
                   
                 
                ⋅ 
                tan 
                 
                
                  30 
                  
                    ∘ 
                   
                 
                ⋅ 
                tan 
                 
                
                  20 
                  
                    ∘ 
                   
                 
               
              
                = 
                tan 
                 
                
                  10 
                  
                    ∘ 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tan 50^{\circ }\cdot \tan 60^{\circ }\cdot \tan 70^{\circ }&=\tan 80^{\circ },\\\tan 40^{\circ }\cdot \tan 30^{\circ }\cdot \tan 20^{\circ }&=\tan 10^{\circ }.\end{aligned}}} 
   
 
The following is perhaps not as readily generalized to an identity containing variables (but see explanation below):
  
    
      
        cos 
         
        
          24 
          
            ∘ 
           
         
        + 
        cos 
         
        
          48 
          
            ∘ 
           
         
        + 
        cos 
         
        
          96 
          
            ∘ 
           
         
        + 
        cos 
         
        
          168 
          
            ∘ 
           
         
        = 
        
          
            1 
            2 
           
         
        . 
       
     
    {\displaystyle \cos 24^{\circ }+\cos 48^{\circ }+\cos 96^{\circ }+\cos 168^{\circ }={\frac {1}{2}}.} 
   
 
Degree measure ceases to be more felicitous than radian measure when we consider this identity with 21 in the denominators:
  
    
      
        cos 
         
        
          
            
              2 
              π 
             
            21 
           
         
        + 
        cos 
         
        
          ( 
          
            2 
            ⋅ 
            
              
                
                  2 
                  π 
                 
                21 
               
             
           
          ) 
         
        + 
        cos 
         
        
          ( 
          
            4 
            ⋅ 
            
              
                
                  2 
                  π 
                 
                21 
               
             
           
          ) 
         
        + 
        cos 
         
        
          ( 
          
            5 
            ⋅ 
            
              
                
                  2 
                  π 
                 
                21 
               
             
           
          ) 
         
        + 
        cos 
         
        
          ( 
          
            8 
            ⋅ 
            
              
                
                  2 
                  π 
                 
                21 
               
             
           
          ) 
         
        + 
        cos 
         
        
          ( 
          
            10 
            ⋅ 
            
              
                
                  2 
                  π 
                 
                21 
               
             
           
          ) 
         
        = 
        
          
            1 
            2 
           
         
        . 
       
     
    {\displaystyle \cos {\frac {2\pi }{21}}+\cos \left(2\cdot {\frac {2\pi }{21}}\right)+\cos \left(4\cdot {\frac {2\pi }{21}}\right)+\cos \left(5\cdot {\frac {2\pi }{21}}\right)+\cos \left(8\cdot {\frac {2\pi }{21}}\right)+\cos \left(10\cdot {\frac {2\pi }{21}}\right)={\frac {1}{2}}.} 
   
 
The factors 1, 2, 4, 5, 8, 10 may start to make the pattern clear: they are those integers less than 21 / 2   that are relatively prime  to (or have no prime factors  in common with) 21. The last several examples are corollaries of a basic fact about the irreducible cyclotomic polynomials : the cosines are the real parts of the zeroes of those polynomials; the sum of the zeroes is the Möbius function  evaluated at (in the very last case above) 21; only half of the zeroes are present above. The two identities preceding this last one arise in the same fashion with 21 replaced by 10 and 15, respectively.
Other cosine identities include:[ 53] 
  
    
      
        
          
            
              
                2 
                cos 
                 
                
                  
                    π 
                    3 
                   
                 
               
              
                = 
                1 
                , 
               
             
            
              
                2 
                cos 
                 
                
                  
                    π 
                    5 
                   
                 
                × 
                2 
                cos 
                 
                
                  
                    
                      2 
                      π 
                     
                    5 
                   
                 
               
              
                = 
                1 
                , 
               
             
            
              
                2 
                cos 
                 
                
                  
                    π 
                    7 
                   
                 
                × 
                2 
                cos 
                 
                
                  
                    
                      2 
                      π 
                     
                    7 
                   
                 
                × 
                2 
                cos 
                 
                
                  
                    
                      3 
                      π 
                     
                    7 
                   
                 
               
              
                = 
                1 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}2\cos {\frac {\pi }{3}}&=1,\\2\cos {\frac {\pi }{5}}\times 2\cos {\frac {2\pi }{5}}&=1,\\2\cos {\frac {\pi }{7}}\times 2\cos {\frac {2\pi }{7}}\times 2\cos {\frac {3\pi }{7}}&=1,\end{aligned}}} 
   
 
  
    
      
        cos 
         
        
          
            π 
            3 
           
         
        + 
        cos 
         
        
          
            π 
            5 
           
         
        × 
        cos 
         
        
          
            
              2 
              π 
             
            5 
           
         
        + 
        cos 
         
        
          
            π 
            7 
           
         
        × 
        cos 
         
        
          
            
              2 
              π 
             
            7 
           
         
        × 
        cos 
         
        
          
            
              3 
              π 
             
            7 
           
         
        + 
        ⋯ 
        = 
        1. 
       
     
    {\displaystyle \cos {\frac {\pi }{3}}+\cos {\frac {\pi }{5}}\times \cos {\frac {2\pi }{5}}+\cos {\frac {\pi }{7}}\times \cos {\frac {2\pi }{7}}\times \cos {\frac {3\pi }{7}}+\dots =1.} 
   
 
Many of those curious identities stem from more general facts like the following:[ 54] 
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
            − 
            1 
           
         
        sin 
         
        
          
            
              k 
              π 
             
            n 
           
         
        = 
        
          
            n 
            
              2 
              
                n 
                − 
                1 
               
             
           
         
       
     
    {\displaystyle \prod _{k=1}^{n-1}\sin {\frac {k\pi }{n}}={\frac {n}{2^{n-1}}}} 
   
 
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
            − 
            1 
           
         
        cos 
         
        
          
            
              k 
              π 
             
            n 
           
         
        = 
        
          
            
              sin 
               
              
                
                  
                    π 
                    n 
                   
                  2 
                 
               
             
            
              2 
              
                n 
                − 
                1 
               
             
           
         
        . 
       
     
    {\displaystyle \prod _{k=1}^{n-1}\cos {\frac {k\pi }{n}}={\frac {\sin {\frac {\pi n}{2}}}{2^{n-1}}}.} 
   
 
Combining these gives us
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
            − 
            1 
           
         
        tan 
         
        
          
            
              k 
              π 
             
            n 
           
         
        = 
        
          
            n 
            
              sin 
               
              
                
                  
                    π 
                    n 
                   
                  2 
                 
               
             
           
         
       
     
    {\displaystyle \prod _{k=1}^{n-1}\tan {\frac {k\pi }{n}}={\frac {n}{\sin {\frac {\pi n}{2}}}}} 
   
 
If n  is an odd number (
  
    
      
        n 
        = 
        2 
        m 
        + 
        1 
       
     
    {\displaystyle n=2m+1} 
   
 
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            m 
           
         
        tan 
         
        
          
            
              k 
              π 
             
            
              2 
              m 
              + 
              1 
             
           
         
        = 
        
          
            2 
            m 
            + 
            1 
           
         
       
     
    {\displaystyle \prod _{k=1}^{m}\tan {\frac {k\pi }{2m+1}}={\sqrt {2m+1}}} 
   
 
The transfer function of the Butterworth low pass filter  can be expressed in terms of polynomial and poles. By setting the frequency as the cutoff frequency, the following identity can be proved:
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        sin 
         
        
          
            
              
                ( 
                
                  2 
                  k 
                  − 
                  1 
                 
                ) 
               
              π 
             
            
              4 
              n 
             
           
         
        = 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        cos 
         
        
          
            
              
                ( 
                
                  2 
                  k 
                  − 
                  1 
                 
                ) 
               
              π 
             
            
              4 
              n 
             
           
         
        = 
        
          
            
              2 
             
            
              2 
              
                n 
               
             
           
         
       
     
    {\displaystyle \prod _{k=1}^{n}\sin {\frac {\left(2k-1\right)\pi }{4n}}=\prod _{k=1}^{n}\cos {\frac {\left(2k-1\right)\pi }{4n}}={\frac {\sqrt {2}}{2^{n}}}} 
   
 
π An efficient way to compute π   to a large number of digits  is based on the following identity without variables, due to Machin . This is known as a Machin-like formula :
  
    
      
        
          
            π 
            4 
           
         
        = 
        4 
        arctan 
         
        
          
            1 
            5 
           
         
        − 
        arctan 
         
        
          
            1 
            239 
           
         
       
     
    {\displaystyle {\frac {\pi }{4}}=4\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}} 
   
 Leonhard Euler :
  
    
      
        
          
            π 
            4 
           
         
        = 
        5 
        arctan 
         
        
          
            1 
            7 
           
         
        + 
        2 
        arctan 
         
        
          
            3 
            79 
           
         
       
     
    {\displaystyle {\frac {\pi }{4}}=5\arctan {\frac {1}{7}}+2\arctan {\frac {3}{79}}} 
   
 Pythagorean triples :
  
    
      
        π 
        = 
        arccos 
         
        
          
            4 
            5 
           
         
        + 
        arccos 
         
        
          
            5 
            13 
           
         
        + 
        arccos 
         
        
          
            16 
            65 
           
         
        = 
        arcsin 
         
        
          
            3 
            5 
           
         
        + 
        arcsin 
         
        
          
            12 
            13 
           
         
        + 
        arcsin 
         
        
          
            63 
            65 
           
         
        . 
       
     
    {\displaystyle \pi =\arccos {\frac {4}{5}}+\arccos {\frac {5}{13}}+\arccos {\frac {16}{65}}=\arcsin {\frac {3}{5}}+\arcsin {\frac {12}{13}}+\arcsin {\frac {63}{65}}.} 
   
 
Others include:[ 55] [ 51] 
  
    
      
        
          
            π 
            4 
           
         
        = 
        arctan 
         
        
          
            1 
            2 
           
         
        + 
        arctan 
         
        
          
            1 
            3 
           
         
        , 
       
     
    {\displaystyle {\frac {\pi }{4}}=\arctan {\frac {1}{2}}+\arctan {\frac {1}{3}},} 
   
 
  
    
      
        π 
        = 
        arctan 
         
        1 
        + 
        arctan 
         
        2 
        + 
        arctan 
         
        3 
        , 
       
     
    {\displaystyle \pi =\arctan 1+\arctan 2+\arctan 3,} 
   
 
  
    
      
        
          
            π 
            4 
           
         
        = 
        2 
        arctan 
         
        
          
            1 
            3 
           
         
        + 
        arctan 
         
        
          
            1 
            7 
           
         
        . 
       
     
    {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{3}}+\arctan {\frac {1}{7}}.} 
   
 
Generally, for numbers t 1 , ..., t n −1θ n n −1k =1t k π /4, 3π /4)t n π /2 − θ n θ n t 1 , ..., t n −1(−1, 1) .  In particular, the computed t n t 1 , ..., t n −1
  
    
      
        
          
            
              
                
                  
                    π 
                    2 
                   
                 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                arctan 
                 
                ( 
                
                  t 
                  
                    k 
                   
                 
                ) 
               
             
            
              
                π 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                sgn 
                 
                ( 
                
                  t 
                  
                    k 
                   
                 
                ) 
                arccos 
                 
                
                  ( 
                  
                    
                      
                        1 
                        − 
                        
                          t 
                          
                            k 
                           
                          
                            2 
                           
                         
                       
                      
                        1 
                        + 
                        
                          t 
                          
                            k 
                           
                          
                            2 
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                π 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                arcsin 
                 
                
                  ( 
                  
                    
                      
                        2 
                        
                          t 
                          
                            k 
                           
                         
                       
                      
                        1 
                        + 
                        
                          t 
                          
                            k 
                           
                          
                            2 
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                π 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                arctan 
                 
                
                  ( 
                  
                    
                      
                        2 
                        
                          t 
                          
                            k 
                           
                         
                       
                      
                        1 
                        − 
                        
                          t 
                          
                            k 
                           
                          
                            2 
                           
                         
                       
                     
                   
                  ) 
                 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\pi }{2}}&=\sum _{k=1}^{n}\arctan(t_{k})\\\pi &=\sum _{k=1}^{n}\operatorname {sgn}(t_{k})\arccos \left({\frac {1-t_{k}^{2}}{1+t_{k}^{2}}}\right)\\\pi &=\sum _{k=1}^{n}\arcsin \left({\frac {2t_{k}}{1+t_{k}^{2}}}\right)\\\pi &=\sum _{k=1}^{n}\arctan \left({\frac {2t_{k}}{1-t_{k}^{2}}}\right)\,,\end{aligned}}} 
   
 
where in all but the first expression, we have used tangent half-angle formulae.  The first two formulae work even if one or more of the t k (−1, 1) .  Note that if t  = p /q (2t , 1 − t 2 , 1 + t 2 )  values in the above formulae are proportional to the Pythagorean triple (2pq , q 2  − p 2 , q 2  + p 2 ) .
For example, for n  = 3
  
    
      
        
          
            π 
            2 
           
         
        = 
        arctan 
         
        
          ( 
          
            
              a 
              b 
             
           
          ) 
         
        + 
        arctan 
         
        
          ( 
          
            
              c 
              d 
             
           
          ) 
         
        + 
        arctan 
         
        
          ( 
          
            
              
                b 
                d 
                − 
                a 
                c 
               
              
                a 
                d 
                + 
                b 
                c 
               
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\pi }{2}}=\arctan \left({\frac {a}{b}}\right)+\arctan \left({\frac {c}{d}}\right)+\arctan \left({\frac {bd-ac}{ad+bc}}\right)} 
   
 a , b , c , d  > 0
An identity of Euclid 
Euclid  showed in Book XIII, Proposition 10 of his Elements 
  
    
      
        
          sin 
          
            2 
           
         
         
        
          18 
          
            ∘ 
           
         
        + 
        
          sin 
          
            2 
           
         
         
        
          30 
          
            ∘ 
           
         
        = 
        
          sin 
          
            2 
           
         
         
        
          36 
          
            ∘ 
           
         
        . 
       
     
    {\displaystyle \sin ^{2}18^{\circ }+\sin ^{2}30^{\circ }=\sin ^{2}36^{\circ }.} 
   
 
Ptolemy  used this proposition to compute some angles in his table of chords  in Book I, chapter 11 of Almagest 
Composition of trigonometric functions 
These identities involve a trigonometric function of a trigonometric function:[ 56] 
  
    
      
        cos 
         
        ( 
        t 
        sin 
         
        x 
        ) 
        = 
        
          J 
          
            0 
           
         
        ( 
        t 
        ) 
        + 
        2 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          J 
          
            2 
            k 
           
         
        ( 
        t 
        ) 
        cos 
         
        ( 
        2 
        k 
        x 
        ) 
       
     
    {\displaystyle \cos(t\sin x)=J_{0}(t)+2\sum _{k=1}^{\infty }J_{2k}(t)\cos(2kx)} 
   
 
  
    
      
        sin 
         
        ( 
        t 
        sin 
         
        x 
        ) 
        = 
        2 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        
          J 
          
            2 
            k 
            + 
            1 
           
         
        ( 
        t 
        ) 
        sin 
         
        
          
            ( 
           
         
        ( 
        2 
        k 
        + 
        1 
        ) 
        x 
        
          
            ) 
           
         
       
     
    {\displaystyle \sin(t\sin x)=2\sum _{k=0}^{\infty }J_{2k+1}(t)\sin {\big (}(2k+1)x{\big )}} 
   
 
  
    
      
        cos 
         
        ( 
        t 
        cos 
         
        x 
        ) 
        = 
        
          J 
          
            0 
           
         
        ( 
        t 
        ) 
        + 
        2 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        
          J 
          
            2 
            k 
           
         
        ( 
        t 
        ) 
        cos 
         
        ( 
        2 
        k 
        x 
        ) 
       
     
    {\displaystyle \cos(t\cos x)=J_{0}(t)+2\sum _{k=1}^{\infty }(-1)^{k}J_{2k}(t)\cos(2kx)} 
   
 
  
    
      
        sin 
         
        ( 
        t 
        cos 
         
        x 
        ) 
        = 
        2 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        
          J 
          
            2 
            k 
            + 
            1 
           
         
        ( 
        t 
        ) 
        cos 
         
        
          
            ( 
           
         
        ( 
        2 
        k 
        + 
        1 
        ) 
        x 
        
          
            ) 
           
         
       
     
    {\displaystyle \sin(t\cos x)=2\sum _{k=0}^{\infty }(-1)^{k}J_{2k+1}(t)\cos {\big (}(2k+1)x{\big )}} 
   
 where Ji   are Bessel functions .
α  + β  + γ  = 180°A conditional trigonometric identity  is a trigonometric identity that holds if specified conditions on the arguments to the trigonometric functions are satisfied.[ 57] 
  
    
      
        α 
        + 
        β 
        + 
        γ 
        = 
        
          180 
          
            ∘ 
           
         
        , 
       
     
    {\displaystyle \alpha +\beta +\gamma =180^{\circ },} 
   
 [ 58] 
  
    
      
        
          
            
              
                tan 
                 
                α 
                + 
                tan 
                 
                β 
                + 
                tan 
                 
                γ 
               
              
                = 
                tan 
                 
                α 
                tan 
                 
                β 
                tan 
                 
                γ 
               
             
            
              
                1 
               
              
                = 
                cot 
                 
                β 
                cot 
                 
                γ 
                + 
                cot 
                 
                γ 
                cot 
                 
                α 
                + 
                cot 
                 
                α 
                cot 
                 
                β 
               
             
            
              
                cot 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                + 
                cot 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                + 
                cot 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
               
              
                = 
                cot 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                cot 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                cot 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
               
             
            
              
                1 
               
              
                = 
                tan 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                tan 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
                + 
                tan 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
                tan 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                + 
                tan 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                tan 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
               
             
            
              
                sin 
                 
                α 
                + 
                sin 
                 
                β 
                + 
                sin 
                 
                γ 
               
              
                = 
                4 
                cos 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                cos 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                cos 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
               
             
            
              
                − 
                sin 
                 
                α 
                + 
                sin 
                 
                β 
                + 
                sin 
                 
                γ 
               
              
                = 
                4 
                cos 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                sin 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                sin 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
               
             
            
              
                cos 
                 
                α 
                + 
                cos 
                 
                β 
                + 
                cos 
                 
                γ 
               
              
                = 
                4 
                sin 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                sin 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                sin 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
              
                − 
                cos 
                 
                α 
                + 
                cos 
                 
                β 
                + 
                cos 
                 
                γ 
               
              
                = 
                4 
                sin 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                cos 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                cos 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
                − 
                1 
               
             
            
              
                sin 
                 
                ( 
                2 
                α 
                ) 
                + 
                sin 
                 
                ( 
                2 
                β 
                ) 
                + 
                sin 
                 
                ( 
                2 
                γ 
                ) 
               
              
                = 
                4 
                sin 
                 
                α 
                sin 
                 
                β 
                sin 
                 
                γ 
               
             
            
              
                − 
                sin 
                 
                ( 
                2 
                α 
                ) 
                + 
                sin 
                 
                ( 
                2 
                β 
                ) 
                + 
                sin 
                 
                ( 
                2 
                γ 
                ) 
               
              
                = 
                4 
                sin 
                 
                α 
                cos 
                 
                β 
                cos 
                 
                γ 
               
             
            
              
                cos 
                 
                ( 
                2 
                α 
                ) 
                + 
                cos 
                 
                ( 
                2 
                β 
                ) 
                + 
                cos 
                 
                ( 
                2 
                γ 
                ) 
               
              
                = 
                − 
                4 
                cos 
                 
                α 
                cos 
                 
                β 
                cos 
                 
                γ 
                − 
                1 
               
             
            
              
                − 
                cos 
                 
                ( 
                2 
                α 
                ) 
                + 
                cos 
                 
                ( 
                2 
                β 
                ) 
                + 
                cos 
                 
                ( 
                2 
                γ 
                ) 
               
              
                = 
                − 
                4 
                cos 
                 
                α 
                sin 
                 
                β 
                sin 
                 
                γ 
                + 
                1 
               
             
            
              
                
                  sin 
                  
                    2 
                   
                 
                 
                α 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                β 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                γ 
               
              
                = 
                2 
                cos 
                 
                α 
                cos 
                 
                β 
                cos 
                 
                γ 
                + 
                2 
               
             
            
              
                − 
                
                  sin 
                  
                    2 
                   
                 
                 
                α 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                β 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                γ 
               
              
                = 
                2 
                cos 
                 
                α 
                sin 
                 
                β 
                sin 
                 
                γ 
               
             
            
              
                
                  cos 
                  
                    2 
                   
                 
                 
                α 
                + 
                
                  cos 
                  
                    2 
                   
                 
                 
                β 
                + 
                
                  cos 
                  
                    2 
                   
                 
                 
                γ 
               
              
                = 
                − 
                2 
                cos 
                 
                α 
                cos 
                 
                β 
                cos 
                 
                γ 
                + 
                1 
               
             
            
              
                − 
                
                  cos 
                  
                    2 
                   
                 
                 
                α 
                + 
                
                  cos 
                  
                    2 
                   
                 
                 
                β 
                + 
                
                  cos 
                  
                    2 
                   
                 
                 
                γ 
               
              
                = 
                − 
                2 
                cos 
                 
                α 
                sin 
                 
                β 
                sin 
                 
                γ 
                + 
                1 
               
             
            
              
                
                  sin 
                  
                    2 
                   
                 
                 
                ( 
                2 
                α 
                ) 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                ( 
                2 
                β 
                ) 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                ( 
                2 
                γ 
                ) 
               
              
                = 
                − 
                2 
                cos 
                 
                ( 
                2 
                α 
                ) 
                cos 
                 
                ( 
                2 
                β 
                ) 
                cos 
                 
                ( 
                2 
                γ 
                ) 
                + 
                2 
               
             
            
              
                
                  cos 
                  
                    2 
                   
                 
                 
                ( 
                2 
                α 
                ) 
                + 
                
                  cos 
                  
                    2 
                   
                 
                 
                ( 
                2 
                β 
                ) 
                + 
                
                  cos 
                  
                    2 
                   
                 
                 
                ( 
                2 
                γ 
                ) 
               
              
                = 
                2 
                cos 
                 
                ( 
                2 
                α 
                ) 
                cos 
                 
                ( 
                2 
                β 
                ) 
                cos 
                 
                ( 
                2 
                γ 
                ) 
                + 
                1 
               
             
            
              
                1 
               
              
                = 
                
                  sin 
                  
                    2 
                   
                 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                + 
                
                  sin 
                  
                    2 
                   
                 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
                + 
                2 
                sin 
                 
                
                  ( 
                  
                    
                      α 
                      2 
                     
                   
                  ) 
                 
                sin 
                 
                
                  ( 
                  
                    
                      β 
                      2 
                     
                   
                  ) 
                 
                sin 
                 
                
                  ( 
                  
                    
                      γ 
                      2 
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tan \alpha +\tan \beta +\tan \gamma &=\tan \alpha \tan \beta \tan \gamma \\1&=\cot \beta \cot \gamma +\cot \gamma \cot \alpha +\cot \alpha \cot \beta \\\cot \left({\frac {\alpha }{2}}\right)+\cot \left({\frac {\beta }{2}}\right)+\cot \left({\frac {\gamma }{2}}\right)&=\cot \left({\frac {\alpha }{2}}\right)\cot \left({\frac {\beta }{2}}\right)\cot \left({\frac {\gamma }{2}}\right)\\1&=\tan \left({\frac {\beta }{2}}\right)\tan \left({\frac {\gamma }{2}}\right)+\tan \left({\frac {\gamma }{2}}\right)\tan \left({\frac {\alpha }{2}}\right)+\tan \left({\frac {\alpha }{2}}\right)\tan \left({\frac {\beta }{2}}\right)\\\sin \alpha +\sin \beta +\sin \gamma &=4\cos \left({\frac {\alpha }{2}}\right)\cos \left({\frac {\beta }{2}}\right)\cos \left({\frac {\gamma }{2}}\right)\\-\sin \alpha +\sin \beta +\sin \gamma &=4\cos \left({\frac {\alpha }{2}}\right)\sin \left({\frac {\beta }{2}}\right)\sin \left({\frac {\gamma }{2}}\right)\\\cos \alpha +\cos \beta +\cos \gamma &=4\sin \left({\frac {\alpha }{2}}\right)\sin \left({\frac {\beta }{2}}\right)\sin \left({\frac {\gamma }{2}}\right)+1\\-\cos \alpha +\cos \beta +\cos \gamma &=4\sin \left({\frac {\alpha }{2}}\right)\cos \left({\frac {\beta }{2}}\right)\cos \left({\frac {\gamma }{2}}\right)-1\\\sin(2\alpha )+\sin(2\beta )+\sin(2\gamma )&=4\sin \alpha \sin \beta \sin \gamma \\-\sin(2\alpha )+\sin(2\beta )+\sin(2\gamma )&=4\sin \alpha \cos \beta \cos \gamma \\\cos(2\alpha )+\cos(2\beta )+\cos(2\gamma )&=-4\cos \alpha \cos \beta \cos \gamma -1\\-\cos(2\alpha )+\cos(2\beta )+\cos(2\gamma )&=-4\cos \alpha \sin \beta \sin \gamma +1\\\sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma &=2\cos \alpha \cos \beta \cos \gamma +2\\-\sin ^{2}\alpha +\sin ^{2}\beta +\sin ^{2}\gamma &=2\cos \alpha \sin \beta \sin \gamma \\\cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma &=-2\cos \alpha \cos \beta \cos \gamma +1\\-\cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma &=-2\cos \alpha \sin \beta \sin \gamma +1\\\sin ^{2}(2\alpha )+\sin ^{2}(2\beta )+\sin ^{2}(2\gamma )&=-2\cos(2\alpha )\cos(2\beta )\cos(2\gamma )+2\\\cos ^{2}(2\alpha )+\cos ^{2}(2\beta )+\cos ^{2}(2\gamma )&=2\cos(2\alpha )\,\cos(2\beta )\,\cos(2\gamma )+1\\1&=\sin ^{2}\left({\frac {\alpha }{2}}\right)+\sin ^{2}\left({\frac {\beta }{2}}\right)+\sin ^{2}\left({\frac {\gamma }{2}}\right)+2\sin \left({\frac {\alpha }{2}}\right)\,\sin \left({\frac {\beta }{2}}\right)\,\sin \left({\frac {\gamma }{2}}\right)\end{aligned}}} 
   
 
Historical shorthands 
The versine , coversine , haversine , and exsecant  were used in navigation. For example, the haversine formula  was used to calculate the distance between two points on a sphere. They are rarely used today.
Miscellaneous 
Dirichlet kernel 
The Dirichlet kernel Dn  (x )
  
    
      
        1 
        + 
        2 
        cos 
         
        x 
        + 
        2 
        cos 
         
        ( 
        2 
        x 
        ) 
        + 
        2 
        cos 
         
        ( 
        3 
        x 
        ) 
        + 
        ⋯ 
        + 
        2 
        cos 
         
        ( 
        n 
        x 
        ) 
        = 
        
          
            
              sin 
               
              
                ( 
                
                  
                    ( 
                    
                      n 
                      + 
                      
                        
                          1 
                          2 
                         
                       
                     
                    ) 
                   
                  x 
                 
                ) 
               
             
            
              sin 
               
              
                ( 
                
                  
                    
                      1 
                      2 
                     
                   
                  x 
                 
                ) 
               
             
           
         
        . 
       
     
    {\displaystyle 1+2\cos x+2\cos(2x)+2\cos(3x)+\cdots +2\cos(nx)={\frac {\sin \left(\left(n+{\frac {1}{2}}\right)x\right)}{\sin \left({\frac {1}{2}}x\right)}}.} 
   
 
The convolution  of any integrable function  of period 
  
    
      
        2 
        π 
       
     
    {\displaystyle 2\pi } 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 measure  or generalized function .
Tangent half-angle substitution 
If we set 
  
    
      
        t 
        = 
        tan 
         
        
          
            x 
            2 
           
         
        , 
       
     
    {\displaystyle t=\tan {\frac {x}{2}},} 
   
 [ 59] 
  
    
      
        sin 
         
        x 
        = 
        
          
            
              2 
              t 
             
            
              1 
              + 
              
                t 
                
                  2 
                 
               
             
           
         
        ; 
        cos 
         
        x 
        = 
        
          
            
              1 
              − 
              
                t 
                
                  2 
                 
               
             
            
              1 
              + 
              
                t 
                
                  2 
                 
               
             
           
         
        ; 
        
          e 
          
            i 
            x 
           
         
        = 
        
          
            
              1 
              + 
              i 
              t 
             
            
              1 
              − 
              i 
              t 
             
           
         
        ; 
        d 
        x 
        = 
        
          
            
              2 
              d 
              t 
             
            
              1 
              + 
              
                t 
                
                  2 
                 
               
             
           
         
        , 
       
     
    {\displaystyle \sin x={\frac {2t}{1+t^{2}}};\qquad \cos x={\frac {1-t^{2}}{1+t^{2}}};\qquad e^{ix}={\frac {1+it}{1-it}};\qquad dx={\frac {2\,dt}{1+t^{2}}},} 
   
 
  
    
      
        
          e 
          
            i 
            x 
           
         
        = 
        cos 
         
        x 
        + 
        i 
        sin 
         
        x 
        , 
       
     
    {\displaystyle e^{ix}=\cos x+i\sin x,} 
   
 cis  x 
When this substitution of 
  
    
      
        t 
       
     
    {\displaystyle t} 
   
 tan x / 2    is used in calculus , it follows that 
  
    
      
        sin 
         
        x 
       
     
    {\displaystyle \sin x} 
   
 2t  / 1 + t 2   
  
    
      
        cos 
         
        x 
       
     
    {\displaystyle \cos x} 
   
 1 − t 2  / 1 + t 2   dx   is replaced by 2 dt  / 1 + t 2   
  
    
      
        sin 
         
        x 
       
     
    {\displaystyle \sin x} 
   
 
  
    
      
        cos 
         
        x 
       
     
    {\displaystyle \cos x} 
   
 
  
    
      
        t 
       
     
    {\displaystyle t} 
   
 antiderivatives .
  
    
      
        cos 
         
        
          
            θ 
            2 
           
         
        ⋅ 
        cos 
         
        
          
            θ 
            4 
           
         
        ⋅ 
        cos 
         
        
          
            θ 
            8 
           
         
        ⋯ 
        = 
        
          ∏ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        cos 
         
        
          
            θ 
            
              2 
              
                n 
               
             
           
         
        = 
        
          
            
              sin 
               
              θ 
             
            θ 
           
         
        = 
        sinc 
         
        θ 
        . 
       
     
    {\displaystyle \cos {\frac {\theta }{2}}\cdot \cos {\frac {\theta }{4}}\cdot \cos {\frac {\theta }{8}}\cdots =\prod _{n=1}^{\infty }\cos {\frac {\theta }{2^{n}}}={\frac {\sin \theta }{\theta }}=\operatorname {sinc} \theta .} 
   
 
See also 
References 
^ Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 4, eqn 4.3.45" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables ISBN  978-0-486-61272-0 . LCCN  64-60036 . MR  0167642 . LCCN  65-12253 .^ Selby 1970 , p. 188^ Abramowitz and Stegun, p. 72, 4.3.13–15 
^ Abramowitz and Stegun, p. 72, 4.3.7–9 
^ Abramowitz and Stegun, p. 72, 4.3.16 
^ a b c d   Weisstein, Eric W.  "Trigonometric Addition Formulas" . MathWorld ^ Abramowitz and Stegun, p. 72, 4.3.17 
^ Abramowitz and Stegun, p. 72, 4.3.18 
^ a b   "Angle Sum and Difference Identities" . www.milefoot.com . Retrieved 2019-10-12  .^ Abramowitz and Stegun, p. 72, 4.3.19 
^ Abramowitz and Stegun, p. 80, 4.4.32 
^ Abramowitz and Stegun, p. 80, 4.4.33 
^ Abramowitz and Stegun, p. 80, 4.4.34 
^ Bronstein, Manuel (1989). "Simplification of real elementary functions". In Gonnet, G. H. (ed.). Proceedings of the ACM-SIGSAM  1989 International Symposium on Symbolic and Algebraic Computation . ISSAC '89 (Portland US-OR, 1989-07). New York: ACM . pp. 207– 211. doi :10.1145/74540.74566 . ISBN  0-89791-325-6 . ^ Michael Hardy. (2016). "On Tangents and Secants of Infinite Sums." The American Mathematical Monthly , volume 123, number 7, 701–703. https://doi.org/10.4169/amer.math.monthly.123.7.701  
^ Michael Hardy (2025), "Invariance of the Cauchy Family Under Linear Fractional Transformations ," The American Mathematical Monthly , 132:5, 453–455, DOI: 10.1080/00029890.2025.2459048 
^  Knight F. B., "A characterization of the Cauchy type." Proceedings of the American Mathematical Society , 1976:130–135.  
^ Hardy, Michael (2016). "On Tangents and Secants of Infinite Sums" . American Mathematical Monthly . 123  (7): 701– 703. doi :10.4169/amer.math.monthly.123.7.701 . ^ a b   "Sine, Cosine, and Ptolemy's Theorem" .^ a b   Weisstein, Eric W.  "Multiple-Angle Formulas" . MathWorld ^ Abramowitz and Stegun, p. 74, 4.3.48 
^ a b   Selby 1970 , pg. 190^ Weisstein, Eric W. "Multiple-Angle Formulas" . mathworld.wolfram.com . Retrieved 2022-02-06  . ^ Ward, Ken. "Multiple angles recursive formula" . Ken Ward's Mathematics Pages . ^ a b   Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 4, eqn 4.3.20-22" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables ISBN  978-0-486-61272-0 . LCCN  64-60036 . MR  0167642 . LCCN  65-12253 .^ a b   Weisstein, Eric W.  "Half-Angle Formulas" . MathWorld ^ Abramowitz and Stegun, p. 72, 4.3.24–26 
^ Weisstein, Eric W.  "Double-Angle Formulas" . MathWorld ^ Abramowitz and Stegun, p. 72, 4.3.27–28 
^ Abramowitz and Stegun, p. 72, 4.3.31–33 
^ Eves, Howard (1990). An introduction to the history of mathematics  (6th ed.). Philadelphia: Saunders College Pub. p. 309. ISBN  0-03-029558-0 . OCLC  20842510 . ^ a b   Abramowitz and Stegun, p. 72, 4.3.34–39 
^ Johnson, Warren P. (Apr 2010). "Trigonometric Identities à la Hermite". American Mathematical Monthly 117  (4): 311– 327. doi :10.4169/000298910x480784 . S2CID  29690311 . ^ "Product Identity Multiple Angle" .^ Apostol, T.M. (1967) Calculus. 2nd edition. New York, NY, Wiley. Pp 334-335. 
^ a b   Weisstein, Eric W.  "Harmonic Addition Theorem" . MathWorld ^ Ortiz Muñiz, Eddie (Feb 1953). "A Method for Deriving Various Formulas in Electrostatics and Electromagnetism Using Lagrange's Trigonometric Identities". American Journal of Physics . 21  (2): 140. Bibcode :1953AmJPh..21..140M . doi :10.1119/1.1933371 . ^ Agarwal, Ravi P.; O'Regan, Donal (2008). Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems ISBN  978-0-387-79146-3 . Extract of page 185 ^ Jeffrey, Alan; Dai, Hui-hui (2008). "Section 2.4.1.6". Handbook of Mathematical Formulas and Integrals  (4th ed.). Academic Press. ISBN  978-0-12-374288-9 . ^ Fay, Temple H.; Kloppers, P. Hendrik (2001). "The Gibbs' phenomenon" International Journal of Mathematical Education in Science and Technology . 32  (1): 73– 89. doi :10.1080/00207390117151 . ^ Abramowitz and Stegun, p. 74, 4.3.47 
^ Abramowitz and Stegun, p. 71, 4.3.2 
^ Abramowitz and Stegun, p. 71, 4.3.1 
^ Abramowitz and Stegun, p. 80, 4.4.26–31 
^ Hawkins, Faith Mary; Hawkins, J. Q. (March 1, 1969). Complex Numbers and Elementary Complex Functions ISBN  978-0356025056 . ^ Markushevich, A. I. (1966). The Remarkable Sine Function 35– 37, 81. ISBN  978-1483256313 . ^ Abramowitz and Stegun, p. 74, 4.3.65–66 
^ Abramowitz and Stegun, p. 75, 4.3.89–90 
^ Abramowitz and Stegun, p. 85, 4.5.68–69 
^ Abramowitz & Stegun 1972 , p. 73, 4.3.45^ a b c   Wu, Rex H. "Proof Without Words: Euler's Arctangent Identity", Mathematics Magazine  77(3), June 2004, p. 189. 
^ S. M. Abrarov; R. K. Jagpal; R. Siddiqui; B. M. Quine (2021), "Algorithmic determination of a large integer in the two-term Machin-like formula for π", Mathematics , 9  (17), 2162, arXiv :2107.01027 doi :10.3390/math9172162  ^ Humble, Steve (Nov 2004). "Grandma's identity". Mathematical Gazette . 88 : 524– 525. doi :10.1017/s0025557200176223 . S2CID  125105552 . ^ Weisstein, Eric W.  "Sine" . MathWorld ^ Harris, Edward M. "Sums of Arctangents", in Roger B. Nelson, Proofs Without Words  (1993, Mathematical Association of America), p. 39. 
^ Milton Abramowitz and Irene Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables  , Dover Publications , New York, 1972, formulae 9.1.42–9.1.45^ Er. K. C. Joshi, Krishna's IIT MATHEMATIKA . Krishna Prakashan Media. Meerut, India.  page 636. 
^ Cagnoli, Antonio (1808), Trigonométrie rectiligne et sphérique , p. 27. 
^ Abramowitz and Stegun, p. 72, 4.3.23 
  
Bibliography 
Abramowitz, Milton ; Stegun, Irene A. , eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Dover Publications . ISBN  978-0-486-61272-0 .Nielsen, Kaj L. (1966), Logarithmic and Trigonometric Tables to Five Places  (2nd ed.), New York: Barnes & Noble , LCCN  61-9103  Selby, Samuel M., ed. (1970), Standard Mathematical Tables  (18th ed.), The Chemical Rubber Co.  
External links