The derivatives  of scalars , vectors , and second-order tensors  with respect to second-order tensors are of considerable use in continuum mechanics . These derivatives are used in the theories of nonlinear elasticity  and plasticity , particularly in the design of algorithms  for numerical simulations .[ 1] 
The directional derivative  provides a systematic way of finding these derivatives.[ 2] 
Derivatives with respect to vectors and second-order tensors 
The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.
Derivatives of scalar valued functions of vectors 
Let f (v ) be a real valued function of the vector v . Then the derivative of f (v ) with respect to v  (or at v ) is the vector  defined through its dot product  with any vector u  being
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        D 
        f 
        ( 
        
          v 
         
        ) 
        [ 
        
          u 
         
        ] 
        = 
        
          
            [ 
            
              
                
                  d 
                  
                    d 
                    α 
                   
                 
               
                
              f 
              ( 
              
                v 
               
              + 
              α 
                
              
                u 
               
              ) 
             
            ] 
           
          
            α 
            = 
            0 
           
         
       
     
    {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =Df(\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~f(\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}} 
   
 
for all vectors u . The above dot product yields a scalar, and if u  is a unit vector gives the directional derivative of f  at v , in the u  direction.
Properties:
If 
  
    
      
        f 
        ( 
        
          v 
         
        ) 
        = 
        
          f 
          
            1 
           
         
        ( 
        
          v 
         
        ) 
        + 
        
          f 
          
            2 
           
         
        ( 
        
          v 
         
        ) 
       
     
    {\displaystyle f(\mathbf {v} )=f_{1}(\mathbf {v} )+f_{2}(\mathbf {v} )} 
   
 
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    f 
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
            + 
            
              
                
                  ∂ 
                  
                    f 
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
           
          ) 
         
        ⋅ 
        
          u 
         
       
     
    {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial f_{1}}{\partial \mathbf {v} }}+{\frac {\partial f_{2}}{\partial \mathbf {v} }}\right)\cdot \mathbf {u} } 
   
  
If 
  
    
      
        f 
        ( 
        
          v 
         
        ) 
        = 
        
          f 
          
            1 
           
         
        ( 
        
          v 
         
        ) 
          
        
          f 
          
            2 
           
         
        ( 
        
          v 
         
        ) 
       
     
    {\displaystyle f(\mathbf {v} )=f_{1}(\mathbf {v} )~f_{2}(\mathbf {v} )} 
   
 
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    f 
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
            ⋅ 
            
              u 
             
           
          ) 
         
          
        
          f 
          
            2 
           
         
        ( 
        
          v 
         
        ) 
        + 
        
          f 
          
            1 
           
         
        ( 
        
          v 
         
        ) 
          
        
          ( 
          
            
              
                
                  ∂ 
                  
                    f 
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
            ⋅ 
            
              u 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial f_{1}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)~f_{2}(\mathbf {v} )+f_{1}(\mathbf {v} )~\left({\frac {\partial f_{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)} 
   
  
If 
  
    
      
        f 
        ( 
        
          v 
         
        ) 
        = 
        
          f 
          
            1 
           
         
        ( 
        
          f 
          
            2 
           
         
        ( 
        
          v 
         
        ) 
        ) 
       
     
    {\displaystyle f(\mathbf {v} )=f_{1}(f_{2}(\mathbf {v} ))} 
   
 
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        
          
            
              ∂ 
              
                f 
                
                  1 
                 
               
             
            
              ∂ 
              
                f 
                
                  2 
                 
               
             
           
         
          
        
          
            
              ∂ 
              
                f 
                
                  2 
                 
               
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
       
     
    {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} ={\frac {\partial f_{1}}{\partial f_{2}}}~{\frac {\partial f_{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} } 
   
  
Derivatives of vector valued functions of vectors 
Let f (v ) be a vector valued function of the vector v . Then the derivative of f (v ) with respect to v  (or at v ) is the  second order tensor  defined through its dot product with any vector u  being
  
    
      
        
          
            
              ∂ 
              
                f 
               
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        D 
        
          f 
         
        ( 
        
          v 
         
        ) 
        [ 
        
          u 
         
        ] 
        = 
        
          
            [ 
            
              
                
                  d 
                  
                    d 
                    α 
                   
                 
               
                
              
                f 
               
              ( 
              
                v 
               
              + 
              α 
                
              
                u 
               
              ) 
             
            ] 
           
          
            α 
            = 
            0 
           
         
       
     
    {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =D\mathbf {f} (\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~\mathbf {f} (\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}} 
   
 
for all vectors u . The above dot product yields a vector, and if u  is a unit vector gives the direction derivative of f  at v , in the directional u .
Properties:
If 
  
    
      
        
          f 
         
        ( 
        
          v 
         
        ) 
        = 
        
          
            f 
           
          
            1 
           
         
        ( 
        
          v 
         
        ) 
        + 
        
          
            f 
           
          
            2 
           
         
        ( 
        
          v 
         
        ) 
       
     
    {\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {v} )+\mathbf {f} _{2}(\mathbf {v} )} 
   
 
  
    
      
        
          
            
              ∂ 
              
                f 
               
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      f 
                     
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
            + 
            
              
                
                  ∂ 
                  
                    
                      f 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
           
          ) 
         
        ⋅ 
        
          u 
         
       
     
    {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {v} }}+{\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\right)\cdot \mathbf {u} } 
   
  
If 
  
    
      
        
          f 
         
        ( 
        
          v 
         
        ) 
        = 
        
          
            f 
           
          
            1 
           
         
        ( 
        
          v 
         
        ) 
        × 
        
          
            f 
           
          
            2 
           
         
        ( 
        
          v 
         
        ) 
       
     
    {\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {v} )\times \mathbf {f} _{2}(\mathbf {v} )} 
   
 
  
    
      
        
          
            
              ∂ 
              
                f 
               
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      f 
                     
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
            ⋅ 
            
              u 
             
           
          ) 
         
        × 
        
          
            f 
           
          
            2 
           
         
        ( 
        
          v 
         
        ) 
        + 
        
          
            f 
           
          
            1 
           
         
        ( 
        
          v 
         
        ) 
        × 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      f 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
            ⋅ 
            
              u 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)\times \mathbf {f} _{2}(\mathbf {v} )+\mathbf {f} _{1}(\mathbf {v} )\times \left({\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)} 
   
  
If 
  
    
      
        
          f 
         
        ( 
        
          v 
         
        ) 
        = 
        
          
            f 
           
          
            1 
           
         
        ( 
        
          
            f 
           
          
            2 
           
         
        ( 
        
          v 
         
        ) 
        ) 
       
     
    {\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {f} _{2}(\mathbf {v} ))} 
   
 
  
    
      
        
          
            
              ∂ 
              
                f 
               
             
            
              ∂ 
              
                v 
               
             
           
         
        ⋅ 
        
          u 
         
        = 
        
          
            
              ∂ 
              
                
                  f 
                 
                
                  1 
                 
               
             
            
              ∂ 
              
                
                  f 
                 
                
                  2 
                 
               
             
           
         
        ⋅ 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      f 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    v 
                   
                 
               
             
            ⋅ 
            
              u 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} ={\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {f} _{2}}}\cdot \left({\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)} 
   
  
Derivatives of scalar valued functions of second-order tensors 
Let 
  
    
      
        f 
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle f({\boldsymbol {S}})} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        f 
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle f({\boldsymbol {S}})} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
  second order tensor  defined as
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        D 
        f 
        ( 
        
          S 
         
        ) 
        [ 
        
          T 
         
        ] 
        = 
        
          
            [ 
            
              
                
                  d 
                  
                    d 
                    α 
                   
                 
               
                
              f 
              ( 
              
                S 
               
              + 
              α 
                
              
                T 
               
              ) 
             
            ] 
           
          
            α 
            = 
            0 
           
         
       
     
    {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=Df({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~f({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
Properties:
If 
  
    
      
        f 
        ( 
        
          S 
         
        ) 
        = 
        
          f 
          
            1 
           
         
        ( 
        
          S 
         
        ) 
        + 
        
          f 
          
            2 
           
         
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {S}})+f_{2}({\boldsymbol {S}})} 
   
 
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    f 
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            + 
            
              
                
                  ∂ 
                  
                    f 
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
           
          ) 
         
        : 
        
          T 
         
       
     
    {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial f_{1}}{\partial {\boldsymbol {S}}}}+{\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}\right):{\boldsymbol {T}}} 
   
  
If 
  
    
      
        f 
        ( 
        
          S 
         
        ) 
        = 
        
          f 
          
            1 
           
         
        ( 
        
          S 
         
        ) 
          
        
          f 
          
            2 
           
         
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {S}})~f_{2}({\boldsymbol {S}})} 
   
 
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    f 
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
          
        
          f 
          
            2 
           
         
        ( 
        
          S 
         
        ) 
        + 
        
          f 
          
            1 
           
         
        ( 
        
          S 
         
        ) 
          
        
          ( 
          
            
              
                
                  ∂ 
                  
                    f 
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial f_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)~f_{2}({\boldsymbol {S}})+f_{1}({\boldsymbol {S}})~\left({\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} 
   
  
If 
  
    
      
        f 
        ( 
        
          S 
         
        ) 
        = 
        
          f 
          
            1 
           
         
        ( 
        
          f 
          
            2 
           
         
        ( 
        
          S 
         
        ) 
        ) 
       
     
    {\displaystyle f({\boldsymbol {S}})=f_{1}(f_{2}({\boldsymbol {S}}))} 
   
 
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        
          
            
              ∂ 
              
                f 
                
                  1 
                 
               
             
            
              ∂ 
              
                f 
                
                  2 
                 
               
             
           
         
          
        
          ( 
          
            
              
                
                  ∂ 
                  
                    f 
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial f_{1}}{\partial f_{2}}}~\left({\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} 
   
  
Derivatives of tensor valued functions of second-order tensors 
Let 
  
    
      
        
          F 
         
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          F 
         
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
  fourth order tensor  defined as
  
    
      
        
          
            
              ∂ 
              
                F 
               
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        D 
        
          F 
         
        ( 
        
          S 
         
        ) 
        [ 
        
          T 
         
        ] 
        = 
        
          
            [ 
            
              
                
                  d 
                  
                    d 
                    α 
                   
                 
               
                
              
                F 
               
              ( 
              
                S 
               
              + 
              α 
                
              
                T 
               
              ) 
             
            ] 
           
          
            α 
            = 
            0 
           
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=D{\boldsymbol {F}}({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~{\boldsymbol {F}}({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
Properties:
If 
  
    
      
        
          F 
         
        ( 
        
          S 
         
        ) 
        = 
        
          
            F 
           
          
            1 
           
         
        ( 
        
          S 
         
        ) 
        + 
        
          
            F 
           
          
            2 
           
         
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {S}})+{\boldsymbol {F}}_{2}({\boldsymbol {S}})} 
   
 
  
    
      
        
          
            
              ∂ 
              
                F 
               
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            + 
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
           
          ) 
         
        : 
        
          T 
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}+{\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}\right):{\boldsymbol {T}}} 
   
  
If 
  
    
      
        
          F 
         
        ( 
        
          S 
         
        ) 
        = 
        
          
            F 
           
          
            1 
           
         
        ( 
        
          S 
         
        ) 
        ⋅ 
        
          
            F 
           
          
            2 
           
         
        ( 
        
          S 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})} 
   
 
  
    
      
        
          
            
              ∂ 
              
                F 
               
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
        ⋅ 
        
          
            F 
           
          
            2 
           
         
        ( 
        
          S 
         
        ) 
        + 
        
          
            F 
           
          
            1 
           
         
        ( 
        
          S 
         
        ) 
        ⋅ 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})+{\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot \left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} 
   
  
If 
  
    
      
        
          F 
         
        ( 
        
          S 
         
        ) 
        = 
        
          
            F 
           
          
            1 
           
         
        ( 
        
          
            F 
           
          
            2 
           
         
        ( 
        
          S 
         
        ) 
        ) 
       
     
    {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {F}}_{2}({\boldsymbol {S}}))} 
   
 
  
    
      
        
          
            
              ∂ 
              
                F 
               
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        
          
            
              ∂ 
              
                
                  F 
                 
                
                  1 
                 
               
             
            
              ∂ 
              
                
                  F 
                 
                
                  2 
                 
               
             
           
         
        : 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {F}}_{2}}}:\left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} 
   
  
If 
  
    
      
        f 
        ( 
        
          S 
         
        ) 
        = 
        
          f 
          
            1 
           
         
        ( 
        
          
            F 
           
          
            2 
           
         
        ( 
        
          S 
         
        ) 
        ) 
       
     
    {\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {F}}_{2}({\boldsymbol {S}}))} 
   
 
  
    
      
        
          
            
              ∂ 
              f 
             
            
              ∂ 
              
                S 
               
             
           
         
        : 
        
          T 
         
        = 
        
          
            
              ∂ 
              
                f 
                
                  1 
                 
               
             
            
              ∂ 
              
                
                  F 
                 
                
                  2 
                 
               
             
           
         
        : 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial f_{1}}{\partial {\boldsymbol {F}}_{2}}}:\left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} 
   
  
Gradient of a tensor field 
The gradient , 
  
    
      
        
          ∇ 
         
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}} 
   
 
  
    
      
        
          T 
         
        ( 
        
          x 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {T}}(\mathbf {x} )} 
   
 c  is defined as:
  
    
      
        
          ∇ 
         
        
          T 
         
        ⋅ 
        
          c 
         
        = 
        
          lim 
          
            α 
            → 
            0 
           
         
        
          
            
              
                 
              
                
                  d 
                 
               
             
            
              
                 
              
                
                  d 
                  α 
                 
               
             
           
         
          
        
          T 
         
        ( 
        
          x 
         
        + 
        α 
        
          c 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}\cdot \mathbf {c} =\lim _{\alpha \rightarrow 0}\quad {\cfrac {d}{d\alpha }}~{\boldsymbol {T}}(\mathbf {x} +\alpha \mathbf {c} )} 
   
 n  is a tensor field of order n +1.
Cartesian coordinates 
If 
  
    
      
        
          
            e 
           
          
            1 
           
         
        , 
        
          
            e 
           
          
            2 
           
         
        , 
        
          
            e 
           
          
            3 
           
         
       
     
    {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}} 
   
 Cartesian coordinate  system, with coordinates of points denoted by (
  
    
      
        
          x 
          
            1 
           
         
        , 
        
          x 
          
            2 
           
         
        , 
        
          x 
          
            3 
           
         
       
     
    {\displaystyle x_{1},x_{2},x_{3}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
  
    
      
        
          ∇ 
         
        
          T 
         
        = 
        
          
            
              
                 
              
                
                  ∂ 
                  
                    T 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    x 
                    
                      i 
                     
                   
                 
               
             
           
         
        ⊗ 
        
          
            e 
           
          
            i 
           
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}={\cfrac {\partial {\boldsymbol {T}}}{\partial x_{i}}}\otimes \mathbf {e} _{i}} 
   
 
Since the basis vectors do not vary in a Cartesian coordinate system we have the following relations for the gradients of a scalar field 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
 v , and a second-order tensor field 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ϕ 
               
              
                = 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          ϕ 
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    i 
                   
                 
                = 
                
                  ϕ 
                  
                    , 
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    i 
                   
                 
               
             
            
              
                
                  ∇ 
                 
                
                  v 
                 
               
              
                = 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          ( 
                          
                            v 
                            
                              j 
                             
                           
                          
                            
                              e 
                             
                            
                              j 
                             
                           
                          ) 
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                = 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            v 
                            
                              j 
                             
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    j 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                = 
                
                  v 
                  
                    j 
                    , 
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    j 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
               
             
            
              
                
                  ∇ 
                 
                
                  S 
                 
               
              
                = 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          ( 
                          
                            S 
                            
                              j 
                              k 
                             
                           
                          
                            
                              e 
                             
                            
                              j 
                             
                           
                          ⊗ 
                          
                            
                              e 
                             
                            
                              k 
                             
                           
                          ) 
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                = 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            S 
                            
                              j 
                              k 
                             
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    j 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    k 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                = 
                
                  S 
                  
                    j 
                    k 
                    , 
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    j 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    k 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi &={\cfrac {\partial \phi }{\partial x_{i}}}~\mathbf {e} _{i}=\phi _{,i}~\mathbf {e} _{i}\\{\boldsymbol {\nabla }}\mathbf {v} &={\cfrac {\partial (v_{j}\mathbf {e} _{j})}{\partial x_{i}}}\otimes \mathbf {e} _{i}={\cfrac {\partial v_{j}}{\partial x_{i}}}~\mathbf {e} _{j}\otimes \mathbf {e} _{i}=v_{j,i}~\mathbf {e} _{j}\otimes \mathbf {e} _{i}\\{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\cfrac {\partial (S_{jk}\mathbf {e} _{j}\otimes \mathbf {e} _{k})}{\partial x_{i}}}\otimes \mathbf {e} _{i}={\cfrac {\partial S_{jk}}{\partial x_{i}}}~\mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{i}=S_{jk,i}~\mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{i}\end{aligned}}} 
   
 
Curvilinear coordinates 
If 
  
    
      
        
          
            g 
           
          
            1 
           
         
        , 
        
          
            g 
           
          
            2 
           
         
        , 
        
          
            g 
           
          
            3 
           
         
       
     
    {\displaystyle \mathbf {g} ^{1},\mathbf {g} ^{2},\mathbf {g} ^{3}} 
   
 contravariant  basis vectors  in a curvilinear coordinate  system, with coordinates of points denoted by (
  
    
      
        
          ξ 
          
            1 
           
         
        , 
        
          ξ 
          
            2 
           
         
        , 
        
          ξ 
          
            3 
           
         
       
     
    {\displaystyle \xi ^{1},\xi ^{2},\xi ^{3}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 [ 3] 
  
    
      
        
          ∇ 
         
        
          T 
         
        = 
        
          
            
              ∂ 
              
                T 
               
             
            
              ∂ 
              
                ξ 
                
                  i 
                 
               
             
           
         
        ⊗ 
        
          
            g 
           
          
            i 
           
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}={\frac {\partial {\boldsymbol {T}}}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}} 
   
 
From this definition we have the following relations for the gradients of a scalar field 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
 v , and a second-order tensor field 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ϕ 
               
              
                = 
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      
                        ξ 
                        
                          i 
                         
                       
                     
                   
                 
                  
                
                  
                    g 
                   
                  
                    i 
                   
                 
               
             
            
              
                
                  ∇ 
                 
                
                  v 
                 
               
              
                = 
                
                  
                    
                      ∂ 
                      
                        ( 
                        
                          
                            v 
                            
                              j 
                             
                           
                          
                            
                              g 
                             
                            
                              j 
                             
                           
                         
                        ) 
                       
                     
                    
                      ∂ 
                      
                        ξ 
                        
                          i 
                         
                       
                     
                   
                 
                ⊗ 
                
                  
                    g 
                   
                  
                    i 
                   
                 
               
             
            
              
                = 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            v 
                            
                              j 
                             
                           
                         
                        
                          ∂ 
                          
                            ξ 
                            
                              i 
                             
                           
                         
                       
                     
                    + 
                    
                      v 
                      
                        k 
                       
                     
                      
                    
                      Γ 
                      
                        i 
                        k 
                       
                      
                        j 
                       
                     
                   
                  ) 
                 
                  
                
                  
                    g 
                   
                  
                    j 
                   
                 
                ⊗ 
                
                  
                    g 
                   
                  
                    i 
                   
                 
                = 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            v 
                            
                              j 
                             
                           
                         
                        
                          ∂ 
                          
                            ξ 
                            
                              i 
                             
                           
                         
                       
                     
                    − 
                    
                      v 
                      
                        k 
                       
                     
                      
                    
                      Γ 
                      
                        i 
                        j 
                       
                      
                        k 
                       
                     
                   
                  ) 
                 
                  
                
                  
                    g 
                   
                  
                    j 
                   
                 
                ⊗ 
                
                  
                    g 
                   
                  
                    i 
                   
                 
               
             
            
              
                
                  ∇ 
                 
                
                  S 
                 
               
              
                = 
                
                  
                    
                      ∂ 
                      
                        ( 
                        
                          
                            S 
                            
                              j 
                              k 
                             
                           
                            
                          
                            
                              g 
                             
                            
                              j 
                             
                           
                          ⊗ 
                          
                            
                              g 
                             
                            
                              k 
                             
                           
                         
                        ) 
                       
                     
                    
                      ∂ 
                      
                        ξ 
                        
                          i 
                         
                       
                     
                   
                 
                ⊗ 
                
                  
                    g 
                   
                  
                    i 
                   
                 
               
             
            
              
                = 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              j 
                              k 
                             
                           
                         
                        
                          ∂ 
                          
                            ξ 
                            
                              i 
                             
                           
                         
                       
                     
                    − 
                    
                      S 
                      
                        l 
                        k 
                       
                     
                      
                    
                      Γ 
                      
                        i 
                        j 
                       
                      
                        l 
                       
                     
                    − 
                    
                      S 
                      
                        j 
                        l 
                       
                     
                      
                    
                      Γ 
                      
                        i 
                        k 
                       
                      
                        l 
                       
                     
                   
                  ) 
                 
                  
                
                  
                    g 
                   
                  
                    j 
                   
                 
                ⊗ 
                
                  
                    g 
                   
                  
                    k 
                   
                 
                ⊗ 
                
                  
                    g 
                   
                  
                    i 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi &={\frac {\partial \phi }{\partial \xi ^{i}}}~\mathbf {g} ^{i}\\[1.2ex]{\boldsymbol {\nabla }}\mathbf {v} &={\frac {\partial \left(v^{j}\mathbf {g} _{j}\right)}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}\\&=\left({\frac {\partial v^{j}}{\partial \xi ^{i}}}+v^{k}~\Gamma _{ik}^{j}\right)~\mathbf {g} _{j}\otimes \mathbf {g} ^{i}=\left({\frac {\partial v_{j}}{\partial \xi ^{i}}}-v_{k}~\Gamma _{ij}^{k}\right)~\mathbf {g} ^{j}\otimes \mathbf {g} ^{i}\\[1.2ex]{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\frac {\partial \left(S_{jk}~\mathbf {g} ^{j}\otimes \mathbf {g} ^{k}\right)}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}\\&=\left({\frac {\partial S_{jk}}{\partial \xi _{i}}}-S_{lk}~\Gamma _{ij}^{l}-S_{jl}~\Gamma _{ik}^{l}\right)~\mathbf {g} ^{j}\otimes \mathbf {g} ^{k}\otimes \mathbf {g} ^{i}\end{aligned}}} 
   
 
where the Christoffel symbol  
  
    
      
        
          Γ 
          
            i 
            j 
           
          
            k 
           
         
       
     
    {\displaystyle \Gamma _{ij}^{k}} 
   
 
  
    
      
        
          Γ 
          
            i 
            j 
           
          
            k 
           
         
          
        
          
            g 
           
          
            k 
           
         
        = 
        
          
            
              ∂ 
              
                
                  g 
                 
                
                  i 
                 
               
             
            
              ∂ 
              
                ξ 
                
                  j 
                 
               
             
           
         
        ⟹ 
        
          Γ 
          
            i 
            j 
           
          
            k 
           
         
        = 
        
          
            
              ∂ 
              
                
                  g 
                 
                
                  i 
                 
               
             
            
              ∂ 
              
                ξ 
                
                  j 
                 
               
             
           
         
        ⋅ 
        
          
            g 
           
          
            k 
           
         
        = 
        − 
        
          
            g 
           
          
            i 
           
         
        ⋅ 
        
          
            
              ∂ 
              
                
                  g 
                 
                
                  k 
                 
               
             
            
              ∂ 
              
                ξ 
                
                  j 
                 
               
             
           
         
       
     
    {\displaystyle \Gamma _{ij}^{k}~\mathbf {g} _{k}={\frac {\partial \mathbf {g} _{i}}{\partial \xi ^{j}}}\quad \implies \quad \Gamma _{ij}^{k}={\frac {\partial \mathbf {g} _{i}}{\partial \xi ^{j}}}\cdot \mathbf {g} ^{k}=-\mathbf {g} _{i}\cdot {\frac {\partial \mathbf {g} ^{k}}{\partial \xi ^{j}}}} 
   
 
Cylindrical polar coordinates 
In cylindrical coordinates , the gradient is given by
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ϕ 
                = 
                
                 
                 
              
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                  
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      θ 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      ϕ 
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi ={}\quad &{\frac {\partial \phi }{\partial r}}~\mathbf {e} _{r}+{\frac {1}{r}}~{\frac {\partial \phi }{\partial \theta }}~\mathbf {e} _{\theta }+{\frac {\partial \phi }{\partial z}}~\mathbf {e} _{z}\\\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                
                  v 
                 
                = 
                
                 
                 
              
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          r 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            v 
                            
                              r 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    − 
                    
                      v 
                      
                        θ 
                       
                     
                   
                  ) 
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          r 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          θ 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            v 
                            
                              θ 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    
                      v 
                      
                        r 
                       
                     
                   
                  ) 
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          θ 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          z 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          z 
                         
                       
                     
                    
                      ∂ 
                      θ 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          z 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\mathbf {v} ={}\quad &{\frac {\partial v_{r}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {1}{r}}\left({\frac {\partial v_{r}}{\partial \theta }}-v_{\theta }\right)~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{r}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\\{}+{}&{\frac {\partial v_{\theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {1}{r}}\left({\frac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{\theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\{}+{}&{\frac {\partial v_{z}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {1}{r}}{\frac {\partial v_{z}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{z}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\\\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                
                  S 
                 
                = 
                
                 
                 
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          r 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          r 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              r 
                              r 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    − 
                    ( 
                    
                      S 
                      
                        θ 
                        r 
                       
                     
                    + 
                    
                      S 
                      
                        r 
                        θ 
                       
                     
                    ) 
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              r 
                              θ 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    ( 
                    
                      S 
                      
                        r 
                        r 
                       
                     
                    − 
                    
                      S 
                      
                        θ 
                        θ 
                       
                     
                    ) 
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          z 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          z 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              r 
                              z 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    − 
                    
                      S 
                      
                        θ 
                        z 
                       
                     
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          θ 
                          r 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          θ 
                          r 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              θ 
                              r 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    ( 
                    
                      S 
                      
                        r 
                        r 
                       
                     
                    − 
                    
                      S 
                      
                        θ 
                        θ 
                       
                     
                    ) 
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          θ 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          θ 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              θ 
                              θ 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    ( 
                    
                      S 
                      
                        r 
                        θ 
                       
                     
                    + 
                    
                      S 
                      
                        θ 
                        r 
                       
                     
                    ) 
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          θ 
                          z 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          θ 
                          z 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              θ 
                              z 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    
                      S 
                      
                        r 
                        z 
                       
                     
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          r 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          r 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              z 
                              r 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    − 
                    
                      S 
                      
                        z 
                        θ 
                       
                     
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              z 
                              θ 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    
                      S 
                      
                        z 
                        r 
                       
                     
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          z 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          z 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                  
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          z 
                         
                       
                     
                    
                      ∂ 
                      θ 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    z 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    θ 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {S}}={}\quad &{\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{rr}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{rr}}{\partial \theta }}-(S_{\theta r}+S_{r\theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{rz}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{rz}}{\partial \theta }}-S_{\theta z}\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta r}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta r}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta \theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta \theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta z}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta z}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{zr}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{zr}}{\partial \theta }}-S_{z\theta }\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{z\theta }}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{z\theta }}{\partial \theta }}+S_{zr}\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{zz}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}~{\frac {\partial S_{zz}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\end{aligned}}} 
   
 
Divergence of a tensor field 
The divergence  of a tensor field 
  
    
      
        
          T 
         
        ( 
        
          x 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {T}}(\mathbf {x} )} 
   
 
  
    
      
        ( 
        
          ∇ 
         
        ⋅ 
        
          T 
         
        ) 
        ⋅ 
        
          c 
         
        = 
        
          ∇ 
         
        ⋅ 
        
          ( 
          
            
              c 
             
            ⋅ 
            
              
                T 
               
              
                
                  T 
                 
               
             
           
          ) 
         
          
        ; 
        
          ∇ 
         
        ⋅ 
        
          v 
         
        = 
        
          tr 
         
        ( 
        
          ∇ 
         
        
          v 
         
        ) 
       
     
    {\displaystyle ({\boldsymbol {\nabla }}\cdot {\boldsymbol {T}})\cdot \mathbf {c} ={\boldsymbol {\nabla }}\cdot \left(\mathbf {c} \cdot {\boldsymbol {T}}^{\textsf {T}}\right)~;\qquad {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\text{tr}}({\boldsymbol {\nabla }}\mathbf {v} )} 
   
 
where c  is an arbitrary constant vector and v  is a vector field. If 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 n  > 1 then the divergence of the field is a tensor of order n − 1.
Cartesian coordinates 
In a Cartesian coordinate system we have the following relations for a vector field v  and a second-order tensor field 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  v 
                 
               
              
                = 
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          i 
                         
                       
                     
                    
                      ∂ 
                      
                        x 
                        
                          i 
                         
                       
                     
                   
                 
                = 
                
                  v 
                  
                    i 
                    , 
                    i 
                   
                 
               
             
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  S 
                 
               
              
                = 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          i 
                          k 
                         
                       
                     
                    
                      ∂ 
                      
                        x 
                        
                          i 
                         
                       
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    k 
                   
                 
                = 
                
                  S 
                  
                    i 
                    k 
                    , 
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    k 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &={\frac {\partial v_{i}}{\partial x_{i}}}=v_{i,i}\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\frac {\partial S_{ik}}{\partial x_{i}}}~\mathbf {e} _{k}=S_{ik,i}~\mathbf {e} _{k}\end{aligned}}} 
   
 
where tensor index notation  for partial derivatives is used in the rightmost expressions. Note that
  
    
      
        
          ∇ 
         
        ⋅ 
        
          S 
         
        ≠ 
        
          ∇ 
         
        ⋅ 
        
          
            S 
           
          
            
              T 
             
           
         
        . 
       
     
    {\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}\neq {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}^{\textsf {T}}.} 
   
 
For a symmetric second-order tensor, the divergence is also often written as[ 4] 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  S 
                 
               
              
                = 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            S 
                            
                              k 
                              i 
                             
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    k 
                   
                 
                = 
                
                  S 
                  
                    k 
                    i 
                    , 
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    k 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\cfrac {\partial S_{ki}}{\partial x_{i}}}~\mathbf {e} _{k}=S_{ki,i}~\mathbf {e} _{k}\end{aligned}}} 
   
 
The above expression is sometimes used as the definition of
  
    
      
        
          ∇ 
         
        ⋅ 
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}} 
   
 
  
    
      
        div 
         
        
          S 
         
       
     
    {\displaystyle \operatorname {div} {\boldsymbol {S}}} 
   
 
The difference stems from whether the differentiation is performed with respect to the rows or columns of 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle \mathbf {S} } 
   
 
  
    
      
        
          v 
         
       
     
    {\displaystyle \mathbf {v} } 
   
 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  ( 
                  
                    
                      ∇ 
                     
                    
                      v 
                     
                   
                  ) 
                 
               
              
                = 
                
                  ∇ 
                 
                ⋅ 
                
                  ( 
                  
                    
                      v 
                      
                        i 
                        , 
                        j 
                       
                     
                      
                    
                      
                        e 
                       
                      
                        i 
                       
                     
                    ⊗ 
                    
                      
                        e 
                       
                      
                        j 
                       
                     
                   
                  ) 
                 
                = 
                
                  v 
                  
                    i 
                    , 
                    j 
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⋅ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    j 
                   
                 
                = 
                
                  
                    ( 
                    
                      
                        ∇ 
                       
                      ⋅ 
                      
                        v 
                       
                     
                    ) 
                   
                  
                    , 
                    j 
                   
                 
                  
                
                  
                    e 
                   
                  
                    j 
                   
                 
                = 
                
                  ∇ 
                 
                
                  ( 
                  
                    
                      ∇ 
                     
                    ⋅ 
                    
                      v 
                     
                   
                  ) 
                 
               
             
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  [ 
                  
                    
                      ( 
                      
                        
                          ∇ 
                         
                        
                          v 
                         
                       
                      ) 
                     
                    
                      
                        T 
                       
                     
                   
                  ] 
                 
               
              
                = 
                
                  ∇ 
                 
                ⋅ 
                
                  ( 
                  
                    
                      v 
                      
                        j 
                        , 
                        i 
                       
                     
                      
                    
                      
                        e 
                       
                      
                        i 
                       
                     
                    ⊗ 
                    
                      
                        e 
                       
                      
                        j 
                       
                     
                   
                  ) 
                 
                = 
                
                  v 
                  
                    j 
                    , 
                    i 
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⋅ 
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    j 
                   
                 
                = 
                
                  
                    ∇ 
                   
                  
                    2 
                   
                 
                
                  v 
                  
                    j 
                   
                 
                  
                
                  
                    e 
                   
                  
                    j 
                   
                 
                = 
                
                  
                    ∇ 
                   
                  
                    2 
                   
                 
                
                  v 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \left({\boldsymbol {\nabla }}\mathbf {v} \right)&={\boldsymbol {\nabla }}\cdot \left(v_{i,j}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{i,ji}~\mathbf {e} _{i}\cdot \mathbf {e} _{i}\otimes \mathbf {e} _{j}=\left({\boldsymbol {\nabla }}\cdot \mathbf {v} \right)_{,j}~\mathbf {e} _{j}={\boldsymbol {\nabla }}\left({\boldsymbol {\nabla }}\cdot \mathbf {v} \right)\\{\boldsymbol {\nabla }}\cdot \left[\left({\boldsymbol {\nabla }}\mathbf {v} \right)^{\textsf {T}}\right]&={\boldsymbol {\nabla }}\cdot \left(v_{j,i}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{j,ii}~\mathbf {e} _{i}\cdot \mathbf {e} _{i}\otimes \mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}v_{j}~\mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}\mathbf {v} \end{aligned}}} 
   
 
The last equation is equivalent to the alternative definition / interpretation[ 4] 
  
    
      
        
          
            
              
                
                  
                    ( 
                    
                      
                        ∇ 
                       
                      ⋅ 
                     
                    ) 
                   
                  
                    alt 
                   
                 
                
                  ( 
                  
                    
                      ∇ 
                     
                    
                      v 
                     
                   
                  ) 
                 
                = 
                
                  
                    ( 
                    
                      
                        ∇ 
                       
                      ⋅ 
                     
                    ) 
                   
                  
                    alt 
                   
                 
                
                  ( 
                  
                    
                      v 
                      
                        i 
                        , 
                        j 
                       
                     
                      
                    
                      
                        e 
                       
                      
                        i 
                       
                     
                    ⊗ 
                    
                      
                        e 
                       
                      
                        j 
                       
                     
                   
                  ) 
                 
                = 
                
                  v 
                  
                    i 
                    , 
                    j 
                    j 
                   
                 
                  
                
                  
                    e 
                   
                  
                    i 
                   
                 
                ⊗ 
                
                  
                    e 
                   
                  
                    j 
                   
                 
                ⋅ 
                
                  
                    e 
                   
                  
                    j 
                   
                 
                = 
                
                  
                    ∇ 
                   
                  
                    2 
                   
                 
                
                  v 
                  
                    i 
                   
                 
                  
                
                  
                    e 
                   
                  
                    i 
                   
                 
                = 
                
                  
                    ∇ 
                   
                  
                    2 
                   
                 
                
                  v 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\left({\boldsymbol {\nabla }}\cdot \right)_{\text{alt}}\left({\boldsymbol {\nabla }}\mathbf {v} \right)=\left({\boldsymbol {\nabla }}\cdot \right)_{\text{alt}}\left(v_{i,j}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{i,jj}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\cdot \mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}v_{i}~\mathbf {e} _{i}={\boldsymbol {\nabla }}^{2}\mathbf {v} \end{aligned}}} 
   
 
Curvilinear coordinates 
In curvilinear coordinates, the divergences of a vector field v  and a second-order tensor field 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  v 
                 
               
              
                = 
                
                  ( 
                  
                    
                      
                        
                          
                             
                          
                            
                              ∂ 
                              
                                v 
                                
                                  i 
                                 
                               
                             
                           
                         
                        
                          
                             
                          
                            
                              ∂ 
                              
                                ξ 
                                
                                  i 
                                 
                               
                             
                           
                         
                       
                     
                    + 
                    
                      v 
                      
                        k 
                       
                     
                      
                    
                      Γ 
                      
                        i 
                        k 
                       
                      
                        i 
                       
                     
                   
                  ) 
                 
               
             
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  S 
                 
               
              
                = 
                
                  ( 
                  
                    
                      
                        
                          
                             
                          
                            
                              ∂ 
                              
                                S 
                                
                                  i 
                                  k 
                                 
                               
                             
                           
                         
                        
                          
                             
                          
                            
                              ∂ 
                              
                                ξ 
                                
                                  i 
                                 
                               
                             
                           
                         
                       
                     
                    − 
                    
                      S 
                      
                        l 
                        k 
                       
                     
                      
                    
                      Γ 
                      
                        i 
                        i 
                       
                      
                        l 
                       
                     
                    − 
                    
                      S 
                      
                        i 
                        l 
                       
                     
                      
                    
                      Γ 
                      
                        i 
                        k 
                       
                      
                        l 
                       
                     
                   
                  ) 
                 
                  
                
                  
                    g 
                   
                  
                    k 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &=\left({\cfrac {\partial v^{i}}{\partial \xi ^{i}}}+v^{k}~\Gamma _{ik}^{i}\right)\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left({\cfrac {\partial S_{ik}}{\partial \xi _{i}}}-S_{lk}~\Gamma _{ii}^{l}-S_{il}~\Gamma _{ik}^{l}\right)~\mathbf {g} ^{k}\end{aligned}}} 
   
 
More generally,
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  S 
                 
               
              
                = 
                
                  [ 
                  
                    
                      
                        
                          
                             
                          
                            
                              ∂ 
                              
                                S 
                                
                                  i 
                                  j 
                                 
                               
                             
                           
                         
                        
                          
                             
                          
                            
                              ∂ 
                              
                                q 
                                
                                  k 
                                 
                               
                             
                           
                         
                       
                     
                    − 
                    
                      Γ 
                      
                        k 
                        i 
                       
                      
                        l 
                       
                     
                      
                    
                      S 
                      
                        l 
                        j 
                       
                     
                    − 
                    
                      Γ 
                      
                        k 
                        j 
                       
                      
                        l 
                       
                     
                      
                    
                      S 
                      
                        i 
                        l 
                       
                     
                   
                  ] 
                 
                  
                
                  g 
                  
                    i 
                    k 
                   
                 
                  
                
                  
                    b 
                   
                  
                    j 
                   
                 
               
             
            
              
                = 
                
                  [ 
                  
                    
                      
                        
                          
                             
                          
                            
                              ∂ 
                              
                                S 
                                
                                  i 
                                  j 
                                 
                               
                             
                           
                         
                        
                          
                             
                          
                            
                              ∂ 
                              
                                q 
                                
                                  i 
                                 
                               
                             
                           
                         
                       
                     
                    + 
                    
                      Γ 
                      
                        i 
                        l 
                       
                      
                        i 
                       
                     
                      
                    
                      S 
                      
                        l 
                        j 
                       
                     
                    + 
                    
                      Γ 
                      
                        i 
                        l 
                       
                      
                        j 
                       
                     
                      
                    
                      S 
                      
                        i 
                        l 
                       
                     
                   
                  ] 
                 
                  
                
                  
                    b 
                   
                  
                    j 
                   
                 
               
             
            
              
                = 
                
                  [ 
                  
                    
                      
                        
                          
                             
                          
                            
                              ∂ 
                              
                                S 
                                
                                    
                                  j 
                                 
                                
                                  i 
                                 
                               
                             
                           
                         
                        
                          
                             
                          
                            
                              ∂ 
                              
                                q 
                                
                                  i 
                                 
                               
                             
                           
                         
                       
                     
                    + 
                    
                      Γ 
                      
                        i 
                        l 
                       
                      
                        i 
                       
                     
                      
                    
                      S 
                      
                          
                        j 
                       
                      
                        l 
                       
                     
                    − 
                    
                      Γ 
                      
                        i 
                        j 
                       
                      
                        l 
                       
                     
                      
                    
                      S 
                      
                          
                        l 
                       
                      
                        i 
                       
                     
                   
                  ] 
                 
                  
                
                  
                    b 
                   
                  
                    j 
                   
                 
               
             
            
              
                = 
                
                  [ 
                  
                    
                      
                        
                          
                             
                          
                            
                              ∂ 
                              
                                S 
                                
                                  i 
                                 
                                
                                    
                                  j 
                                 
                               
                             
                           
                         
                        
                          
                             
                          
                            
                              ∂ 
                              
                                q 
                                
                                  k 
                                 
                               
                             
                           
                         
                       
                     
                    − 
                    
                      Γ 
                      
                        i 
                        k 
                       
                      
                        l 
                       
                     
                      
                    
                      S 
                      
                        l 
                       
                      
                          
                        j 
                       
                     
                    + 
                    
                      Γ 
                      
                        k 
                        l 
                       
                      
                        j 
                       
                     
                      
                    
                      S 
                      
                        i 
                       
                      
                          
                        l 
                       
                     
                   
                  ] 
                 
                  
                
                  g 
                  
                    i 
                    k 
                   
                 
                  
                
                  
                    b 
                   
                  
                    j 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left[{\cfrac {\partial S_{ij}}{\partial q^{k}}}-\Gamma _{ki}^{l}~S_{lj}-\Gamma _{kj}^{l}~S_{il}\right]~g^{ik}~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S^{ij}}{\partial q^{i}}}+\Gamma _{il}^{i}~S^{lj}+\Gamma _{il}^{j}~S^{il}\right]~\mathbf {b} _{j}\\[8pt]&=\left[{\cfrac {\partial S_{~j}^{i}}{\partial q^{i}}}+\Gamma _{il}^{i}~S_{~j}^{l}-\Gamma _{ij}^{l}~S_{~l}^{i}\right]~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S_{i}^{~j}}{\partial q^{k}}}-\Gamma _{ik}^{l}~S_{l}^{~j}+\Gamma _{kl}^{j}~S_{i}^{~l}\right]~g^{ik}~\mathbf {b} _{j}\end{aligned}}} 
   
 
Cylindrical polar coordinates 
In cylindrical polar coordinates 
  
    
      
        
          
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  v 
                 
                = 
                 
              
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          r 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          ∂ 
                          
                            v 
                            
                              θ 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    
                      v 
                      
                        r 
                       
                     
                   
                  ) 
                 
                + 
                
                  
                    
                      ∂ 
                      
                        v 
                        
                          z 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
               
             
            
              
                
                  ∇ 
                 
                ⋅ 
                
                  S 
                 
                = 
                 
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          r 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          r 
                          z 
                         
                       
                     
                    
                      ∂ 
                      r 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              θ 
                              r 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    ( 
                    
                      S 
                      
                        r 
                        r 
                       
                     
                    − 
                    
                      S 
                      
                        θ 
                        θ 
                       
                     
                    ) 
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              θ 
                              θ 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    ( 
                    
                      S 
                      
                        r 
                        θ 
                       
                     
                    + 
                    
                      S 
                      
                        θ 
                        r 
                       
                     
                    ) 
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                + 
                
                  
                    1 
                    r 
                   
                 
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            S 
                            
                              θ 
                              z 
                             
                           
                         
                        
                          ∂ 
                          θ 
                         
                       
                     
                    + 
                    
                      S 
                      
                        r 
                        z 
                       
                     
                   
                  ] 
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
               
             
            
              
                
                 
                + 
                
                 
               
              
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          r 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    r 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          θ 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    θ 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        S 
                        
                          z 
                          z 
                         
                       
                     
                    
                      ∂ 
                      z 
                     
                   
                 
                  
                
                  
                    e 
                   
                  
                    z 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} =\quad &{\frac {\partial v_{r}}{\partial r}}+{\frac {1}{r}}\left({\frac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)+{\frac {\partial v_{z}}{\partial z}}\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}=\quad &{\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{z}\\{}+{}&{\frac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }+{\frac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{z}\\{}+{}&{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\end{aligned}}} 
   
 
Curl of a tensor field 
The curl  of an order-n  > 1 tensor field 
  
    
      
        
          T 
         
        ( 
        
          x 
         
        ) 
       
     
    {\displaystyle {\boldsymbol {T}}(\mathbf {x} )} 
   
 
  
    
      
        ( 
        
          ∇ 
         
        × 
        
          T 
         
        ) 
        ⋅ 
        
          c 
         
        = 
        
          ∇ 
         
        × 
        ( 
        
          c 
         
        ⋅ 
        
          T 
         
        ) 
          
        ; 
        ( 
        
          ∇ 
         
        × 
        
          v 
         
        ) 
        ⋅ 
        
          c 
         
        = 
        
          ∇ 
         
        ⋅ 
        ( 
        
          v 
         
        × 
        
          c 
         
        ) 
       
     
    {\displaystyle ({\boldsymbol {\nabla }}\times {\boldsymbol {T}})\cdot \mathbf {c} ={\boldsymbol {\nabla }}\times (\mathbf {c} \cdot {\boldsymbol {T}})~;\qquad ({\boldsymbol {\nabla }}\times \mathbf {v} )\cdot \mathbf {c} ={\boldsymbol {\nabla }}\cdot (\mathbf {v} \times \mathbf {c} )} 
   
 c  is an arbitrary constant vector and v  is a vector field.
Consider a vector field v  and an arbitrary constant vector c . In index notation, the cross product is given by
  
    
      
        
          v 
         
        × 
        
          c 
         
        = 
        
          ε 
          
            i 
            j 
            k 
           
         
          
        
          v 
          
            j 
           
         
          
        
          c 
          
            k 
           
         
          
        
          
            e 
           
          
            i 
           
         
       
     
    {\displaystyle \mathbf {v} \times \mathbf {c} =\varepsilon _{ijk}~v_{j}~c_{k}~\mathbf {e} _{i}} 
   
 
  
    
      
        
          ε 
          
            i 
            j 
            k 
           
         
       
     
    {\displaystyle \varepsilon _{ijk}} 
   
 permutation symbol , otherwise known as the Levi-Civita symbol. Then,
  
    
      
        
          ∇ 
         
        ⋅ 
        ( 
        
          v 
         
        × 
        
          c 
         
        ) 
        = 
        
          ε 
          
            i 
            j 
            k 
           
         
          
        
          v 
          
            j 
            , 
            i 
           
         
          
        
          c 
          
            k 
           
         
        = 
        ( 
        
          ε 
          
            i 
            j 
            k 
           
         
          
        
          v 
          
            j 
            , 
            i 
           
         
          
        
          
            e 
           
          
            k 
           
         
        ) 
        ⋅ 
        
          c 
         
        = 
        ( 
        
          ∇ 
         
        × 
        
          v 
         
        ) 
        ⋅ 
        
          c 
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}\cdot (\mathbf {v} \times \mathbf {c} )=\varepsilon _{ijk}~v_{j,i}~c_{k}=(\varepsilon _{ijk}~v_{j,i}~\mathbf {e} _{k})\cdot \mathbf {c} =({\boldsymbol {\nabla }}\times \mathbf {v} )\cdot \mathbf {c} } 
   
 
  
    
      
        
          ∇ 
         
        × 
        
          v 
         
        = 
        
          ε 
          
            i 
            j 
            k 
           
         
          
        
          v 
          
            j 
            , 
            i 
           
         
          
        
          
            e 
           
          
            k 
           
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}\times \mathbf {v} =\varepsilon _{ijk}~v_{j,i}~\mathbf {e} _{k}} 
   
 
Curl of a second-order tensor field 
For a second-order tensor 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          c 
         
        ⋅ 
        
          S 
         
        = 
        
          c 
          
            m 
           
         
          
        
          S 
          
            m 
            j 
           
         
          
        
          
            e 
           
          
            j 
           
         
       
     
    {\displaystyle \mathbf {c} \cdot {\boldsymbol {S}}=c_{m}~S_{mj}~\mathbf {e} _{j}} 
   
 
  
    
      
        
          ∇ 
         
        × 
        ( 
        
          c 
         
        ⋅ 
        
          S 
         
        ) 
        = 
        
          ε 
          
            i 
            j 
            k 
           
         
          
        
          c 
          
            m 
           
         
          
        
          S 
          
            m 
            j 
            , 
            i 
           
         
          
        
          
            e 
           
          
            k 
           
         
        = 
        ( 
        
          ε 
          
            i 
            j 
            k 
           
         
          
        
          S 
          
            m 
            j 
            , 
            i 
           
         
          
        
          
            e 
           
          
            k 
           
         
        ⊗ 
        
          
            e 
           
          
            m 
           
         
        ) 
        ⋅ 
        
          c 
         
        = 
        ( 
        
          ∇ 
         
        × 
        
          S 
         
        ) 
        ⋅ 
        
          c 
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}\times (\mathbf {c} \cdot {\boldsymbol {S}})=\varepsilon _{ijk}~c_{m}~S_{mj,i}~\mathbf {e} _{k}=(\varepsilon _{ijk}~S_{mj,i}~\mathbf {e} _{k}\otimes \mathbf {e} _{m})\cdot \mathbf {c} =({\boldsymbol {\nabla }}\times {\boldsymbol {S}})\cdot \mathbf {c} } 
   
 
  
    
      
        
          ∇ 
         
        × 
        
          S 
         
        = 
        
          ε 
          
            i 
            j 
            k 
           
         
          
        
          S 
          
            m 
            j 
            , 
            i 
           
         
          
        
          
            e 
           
          
            k 
           
         
        ⊗ 
        
          
            e 
           
          
            m 
           
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}\times {\boldsymbol {S}}=\varepsilon _{ijk}~S_{mj,i}~\mathbf {e} _{k}\otimes \mathbf {e} _{m}} 
   
 
Identities involving the curl of a tensor field 
The most commonly used identity involving the curl of a tensor field, 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
  
    
      
        
          ∇ 
         
        × 
        ( 
        
          ∇ 
         
        
          T 
         
        ) 
        = 
        
          0 
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}{\boldsymbol {T}})={\boldsymbol {0}}} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          ∇ 
         
        × 
        ( 
        
          ∇ 
         
        
          S 
         
        ) 
        = 
        
          0 
         
        ⟹ 
        
          S 
          
            m 
            i 
            , 
            j 
           
         
        − 
        
          S 
          
            m 
            j 
            , 
            i 
           
         
        = 
        0 
       
     
    {\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}{\boldsymbol {S}})={\boldsymbol {0}}\quad \implies \quad S_{mi,j}-S_{mj,i}=0} 
   
 
Derivative of the determinant of a second-order tensor 
The derivative of the determinant of a second order tensor 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                A 
               
             
           
         
        det 
        ( 
        
          A 
         
        ) 
        = 
        det 
        ( 
        
          A 
         
        ) 
          
        
          
            [ 
            
              
                A 
               
              
                − 
                1 
               
             
            ] 
           
          
            
              T 
             
           
         
          
        . 
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\det({\boldsymbol {A}})=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}~.} 
   
 
In an orthonormal basis, the components of 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 A . In that case, the right hand side corresponds the cofactors of the matrix.
Derivatives of the invariants of a second-order tensor 
The principal invariants of a second order tensor are
  
    
      
        
          
            
              
                
                  I 
                  
                    1 
                   
                 
                ( 
                
                  A 
                 
                ) 
               
              
                = 
                
                  tr 
                 
                
                  A 
                 
               
             
            
              
                
                  I 
                  
                    2 
                   
                 
                ( 
                
                  A 
                 
                ) 
               
              
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  [ 
                  
                    ( 
                    
                      tr 
                     
                    
                      A 
                     
                    
                      ) 
                      
                        2 
                       
                     
                    − 
                    
                      tr 
                     
                    
                      
                        
                          A 
                         
                        
                          2 
                         
                       
                     
                   
                  ] 
                 
               
             
            
              
                
                  I 
                  
                    3 
                   
                 
                ( 
                
                  A 
                 
                ) 
               
              
                = 
                det 
                ( 
                
                  A 
                 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}I_{1}({\boldsymbol {A}})&={\text{tr}}{\boldsymbol {A}}\\I_{2}({\boldsymbol {A}})&={\tfrac {1}{2}}\left[({\text{tr}}{\boldsymbol {A}})^{2}-{\text{tr}}{{\boldsymbol {A}}^{2}}\right]\\I_{3}({\boldsymbol {A}})&=\det({\boldsymbol {A}})\end{aligned}}} 
   
 
The derivatives of these three invariants with respect to 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          1 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                
                  
                    1 
                   
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          2 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                
                  I 
                  
                    1 
                   
                 
                
                  
                    1 
                   
                 
                − 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          3 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                det 
                ( 
                
                  A 
                 
                ) 
                  
                
                  
                    [ 
                    
                      
                        A 
                       
                      
                        − 
                        1 
                       
                     
                    ] 
                   
                  
                    
                      T 
                     
                   
                 
               
             
            
              
                = 
                
                  I 
                  
                    2 
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                  
                
                  ( 
                  
                    
                      I 
                      
                        1 
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                   
                  ) 
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          A 
                         
                        
                          2 
                         
                       
                      − 
                      
                        I 
                        
                          1 
                         
                       
                        
                      
                        A 
                       
                      + 
                      
                        I 
                        
                          2 
                         
                       
                        
                      
                        
                          1 
                         
                       
                     
                    ) 
                   
                  
                    
                      T 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}&={\boldsymbol {\mathit {1}}}\\[3pt]{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=I_{1}\,{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\\[3pt]{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}\\&=I_{2}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}~\left(I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\right)=\left({\boldsymbol {A}}^{2}-I_{1}~{\boldsymbol {A}}+I_{2}~{\boldsymbol {\mathit {1}}}\right)^{\textsf {T}}\end{aligned}}} 
   
 
Proof 
From the derivative of the determinant we know that
  
    
      
        
          
            
              ∂ 
              
                I 
                
                  3 
                 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        det 
        ( 
        
          A 
         
        ) 
          
        
          
            [ 
            
              
                A 
               
              
                − 
                1 
               
             
            ] 
           
          
            
              T 
             
           
         
          
        . 
       
     
    {\displaystyle {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}~.} 
   
 
For the derivatives of the other two invariants, let us go back to the characteristic equation
  
    
      
        det 
        ( 
        λ 
          
        
          
            1 
           
         
        + 
        
          A 
         
        ) 
        = 
        
          λ 
          
            3 
           
         
        + 
        
          I 
          
            1 
           
         
        ( 
        
          A 
         
        ) 
          
        
          λ 
          
            2 
           
         
        + 
        
          I 
          
            2 
           
         
        ( 
        
          A 
         
        ) 
          
        λ 
        + 
        
          I 
          
            3 
           
         
        ( 
        
          A 
         
        ) 
          
        . 
       
     
    {\displaystyle \det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})=\lambda ^{3}+I_{1}({\boldsymbol {A}})~\lambda ^{2}+I_{2}({\boldsymbol {A}})~\lambda +I_{3}({\boldsymbol {A}})~.} 
   
 
Using the same approach as for the determinant of a tensor, we can show that
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                A 
               
             
           
         
        det 
        ( 
        λ 
          
        
          
            1 
           
         
        + 
        
          A 
         
        ) 
        = 
        det 
        ( 
        λ 
          
        
          
            1 
           
         
        + 
        
          A 
         
        ) 
          
        
          
            [ 
            
              ( 
              λ 
                
              
                
                  1 
                 
               
              + 
              
                A 
               
              
                ) 
                
                  − 
                  1 
                 
               
             
            ] 
           
          
            
              T 
             
           
         
          
        . 
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})=\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})~\left[(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})^{-1}\right]^{\textsf {T}}~.} 
   
 
Now the left hand side can be expanded as
  
    
      
        
          
            
              
                
                  
                    ∂ 
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                det 
                ( 
                λ 
                  
                
                  
                    1 
                   
                 
                + 
                
                  A 
                 
                ) 
               
              
                = 
                
                  
                    ∂ 
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                
                  [ 
                  
                    
                      λ 
                      
                        3 
                       
                     
                    + 
                    
                      I 
                      
                        1 
                       
                     
                    ( 
                    
                      A 
                     
                    ) 
                      
                    
                      λ 
                      
                        2 
                       
                     
                    + 
                    
                      I 
                      
                        2 
                       
                     
                    ( 
                    
                      A 
                     
                    ) 
                      
                    λ 
                    + 
                    
                      I 
                      
                        3 
                       
                     
                    ( 
                    
                      A 
                     
                    ) 
                   
                  ] 
                 
               
             
            
              
                = 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          1 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  λ 
                  
                    2 
                   
                 
                + 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          2 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                λ 
                + 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          3 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial }{\partial {\boldsymbol {A}}}}\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})&={\frac {\partial }{\partial {\boldsymbol {A}}}}\left[\lambda ^{3}+I_{1}({\boldsymbol {A}})~\lambda ^{2}+I_{2}({\boldsymbol {A}})~\lambda +I_{3}({\boldsymbol {A}})\right]\\&={\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~.\end{aligned}}} 
   
 
Hence
  
    
      
        
          
            
              ∂ 
              
                I 
                
                  1 
                 
               
             
            
              ∂ 
              
                A 
               
             
           
         
          
        
          λ 
          
            2 
           
         
        + 
        
          
            
              ∂ 
              
                I 
                
                  2 
                 
               
             
            
              ∂ 
              
                A 
               
             
           
         
          
        λ 
        + 
        
          
            
              ∂ 
              
                I 
                
                  3 
                 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        det 
        ( 
        λ 
          
        
          
            1 
           
         
        + 
        
          A 
         
        ) 
          
        
          
            [ 
            
              ( 
              λ 
                
              
                
                  1 
                 
               
              + 
              
                A 
               
              
                ) 
                
                  − 
                  1 
                 
               
             
            ] 
           
          
            
              T 
             
           
         
       
     
    {\displaystyle {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}=\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})~\left[(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})^{-1}\right]^{\textsf {T}}} 
   
 
  
    
      
        ( 
        λ 
          
        
          
            1 
           
         
        + 
        
          A 
         
        
          ) 
          
            
              T 
             
           
         
        ⋅ 
        
          [ 
          
            
              
                
                  ∂ 
                  
                    I 
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
              
            
              λ 
              
                2 
               
             
            + 
            
              
                
                  ∂ 
                  
                    I 
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
              
            λ 
            + 
            
              
                
                  ∂ 
                  
                    I 
                    
                      3 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
           
          ] 
         
        = 
        det 
        ( 
        λ 
          
        
          
            1 
           
         
        + 
        
          A 
         
        ) 
          
        
          
            1 
           
         
          
        . 
       
     
    {\displaystyle (\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})^{\textsf {T}}\cdot \left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\right]=\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})~{\boldsymbol {\mathit {1}}}~.} 
   
 
Expanding the right hand side and separating terms on the left hand side gives
  
    
      
        
          ( 
          
            λ 
              
            
              
                1 
               
             
            + 
            
              
                A 
               
              
                
                  T 
                 
               
             
           
          ) 
         
        ⋅ 
        
          [ 
          
            
              
                
                  ∂ 
                  
                    I 
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
              
            
              λ 
              
                2 
               
             
            + 
            
              
                
                  ∂ 
                  
                    I 
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
              
            λ 
            + 
            
              
                
                  ∂ 
                  
                    I 
                    
                      3 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
           
          ] 
         
        = 
        
          [ 
          
            
              λ 
              
                3 
               
             
            + 
            
              I 
              
                1 
               
             
              
            
              λ 
              
                2 
               
             
            + 
            
              I 
              
                2 
               
             
              
            λ 
            + 
            
              I 
              
                3 
               
             
           
          ] 
         
        
          
            1 
           
         
       
     
    {\displaystyle \left(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}}^{\textsf {T}}\right)\cdot \left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\right]=\left[\lambda ^{3}+I_{1}~\lambda ^{2}+I_{2}~\lambda +I_{3}\right]{\boldsymbol {\mathit {1}}}} 
   
 
or,
  
    
      
        
          
            
              
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              1 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      λ 
                      
                        3 
                       
                     
                   
                   
               
              
                
                  
                    + 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              2 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      λ 
                      
                        2 
                       
                     
                    + 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              3 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    λ 
                   
                  ] 
                 
                
                  
                    1 
                   
                 
                + 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          1 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  λ 
                  
                    2 
                   
                 
                + 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          2 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                λ 
                + 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          3 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  [ 
                  
                    
                      λ 
                      
                        3 
                       
                     
                    + 
                    
                      I 
                      
                        1 
                       
                     
                      
                    
                      λ 
                      
                        2 
                       
                     
                    + 
                    
                      I 
                      
                        2 
                       
                     
                      
                    λ 
                    + 
                    
                      I 
                      
                        3 
                       
                     
                   
                  ] 
                 
                
                  
                    1 
                   
                 
                  
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{3}\right.&\left.+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~\lambda \right]{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\\&=\left[\lambda ^{3}+I_{1}~\lambda ^{2}+I_{2}~\lambda +I_{3}\right]{\boldsymbol {\mathit {1}}}~.\end{aligned}}} 
   
 
If we define 
  
    
      
        
          I 
          
            0 
           
         
        := 
        1 
       
     
    {\displaystyle I_{0}:=1} 
   
 
  
    
      
        
          I 
          
            4 
           
         
        := 
        0 
       
     
    {\displaystyle I_{4}:=0} 
   
 
  
    
      
        
          
            
              
                
                  [ 
                  
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              1 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      λ 
                      
                        3 
                       
                     
                   
                   
               
              
                
                  
                    + 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              2 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      λ 
                      
                        2 
                       
                     
                    + 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              3 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    λ 
                    + 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              4 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                   
                  ] 
                 
                
                  
                    1 
                   
                 
                + 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          0 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  λ 
                  
                    3 
                   
                 
                + 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          1 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  λ 
                  
                    2 
                   
                 
                + 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          2 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                λ 
                + 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          3 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  [ 
                  
                    
                      I 
                      
                        0 
                       
                     
                      
                    
                      λ 
                      
                        3 
                       
                     
                    + 
                    
                      I 
                      
                        1 
                       
                     
                      
                    
                      λ 
                      
                        2 
                       
                     
                    + 
                    
                      I 
                      
                        2 
                       
                     
                      
                    λ 
                    + 
                    
                      I 
                      
                        3 
                       
                     
                   
                  ] 
                 
                
                  
                    1 
                   
                 
                  
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{3}\right.&\left.+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{4}}{\partial {\boldsymbol {A}}}}\right]{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{0}}{\partial {\boldsymbol {A}}}}~\lambda ^{3}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\\&=\left[I_{0}~\lambda ^{3}+I_{1}~\lambda ^{2}+I_{2}~\lambda +I_{3}\right]{\boldsymbol {\mathit {1}}}~.\end{aligned}}} 
   
 
Collecting terms containing various powers of λ, we get
  
    
      
        
          
            
              
                
                  λ 
                  
                    3 
                   
                 
               
              
                
                  ( 
                  
                    
                      I 
                      
                        0 
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              1 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                    ⋅ 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              0 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                   
                  ) 
                 
                + 
                
                  λ 
                  
                    2 
                   
                 
                
                  ( 
                  
                    
                      I 
                      
                        1 
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              2 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                    ⋅ 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              1 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                   
                  ) 
                 
                + 
               
             
            
              
                λ 
                
                  ( 
                  
                    
                      I 
                      
                        2 
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              3 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                    ⋅ 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              2 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                   
                  ) 
                 
                + 
                
                  ( 
                  
                    
                      I 
                      
                        3 
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              4 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                    ⋅ 
                    
                      
                        
                          ∂ 
                          
                            I 
                            
                              3 
                             
                           
                         
                        
                          ∂ 
                          
                            A 
                           
                         
                       
                     
                   
                  ) 
                 
                = 
                0 
                  
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lambda ^{3}&\left(I_{0}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{0}}{\partial {\boldsymbol {A}}}}\right)+\lambda ^{2}\left(I_{1}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}\right)+\\&\qquad \qquad \lambda \left(I_{2}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}\right)+\left(I_{3}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{4}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\right)=0~.\end{aligned}}} 
   
 
Then, invoking the arbitrariness of λ, we have
  
    
      
        
          
            
              
                
                  I 
                  
                    0 
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          1 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          0 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                0 
               
             
            
              
                
                  I 
                  
                    1 
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          2 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  I 
                  
                    2 
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          3 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          2 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                0 
               
             
            
              
                
                  I 
                  
                    3 
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          4 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                ⋅ 
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          3 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                0 
                  
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}I_{0}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{0}}{\partial {\boldsymbol {A}}}}&=0\\I_{1}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-I_{2}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=0\\I_{3}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{4}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=0~.\end{aligned}}} 
   
 
This implies that
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          1 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                
                  
                    1 
                   
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          2 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                
                  I 
                  
                    1 
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
               
             
            
              
                
                  
                    
                      ∂ 
                      
                        I 
                        
                          3 
                         
                       
                     
                    
                      ∂ 
                      
                        A 
                       
                     
                   
                 
               
              
                = 
                
                  I 
                  
                    2 
                   
                 
                  
                
                  
                    1 
                   
                 
                − 
                
                  
                    A 
                   
                  
                    
                      T 
                     
                   
                 
                  
                
                  ( 
                  
                    
                      I 
                      
                        1 
                       
                     
                      
                    
                      
                        1 
                       
                     
                    − 
                    
                      
                        A 
                       
                      
                        
                          T 
                         
                       
                     
                   
                  ) 
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          A 
                         
                        
                          2 
                         
                       
                      − 
                      
                        I 
                        
                          1 
                         
                       
                        
                      
                        A 
                       
                      + 
                      
                        I 
                        
                          2 
                         
                       
                        
                      
                        
                          1 
                         
                       
                     
                    ) 
                   
                  
                    
                      T 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}&={\boldsymbol {\mathit {1}}}\\{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\\{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=I_{2}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}~\left(I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\right)=\left({\boldsymbol {A}}^{2}-I_{1}~{\boldsymbol {A}}+I_{2}~{\boldsymbol {\mathit {1}}}\right)^{\textsf {T}}\end{aligned}}} 
   
 
Derivative of the second-order identity tensor 
Let 
  
    
      
        
          
            1 
           
         
       
     
    {\displaystyle {\boldsymbol {\mathit {1}}}} 
   
 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
  
    
      
        
          
            
              ∂ 
              
                
                  1 
                 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        : 
        
          T 
         
        = 
        
          
            0 
           
         
        : 
        
          T 
         
        = 
        
          
            0 
           
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {\mathit {1}}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathsf {0}}}:{\boldsymbol {T}}={\boldsymbol {\mathit {0}}}} 
   
 
  
    
      
        
          
            1 
           
         
       
     
    {\displaystyle {\boldsymbol {\mathit {1}}}} 
   
 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
Derivative of a second-order tensor with respect to itself 
Let 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
  
    
      
        
          
            
              ∂ 
              
                A 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        : 
        
          T 
         
        = 
        
          
            [ 
            
              
                
                  ∂ 
                  
                    ∂ 
                    α 
                   
                 
               
              ( 
              
                A 
               
              + 
              α 
                
              
                T 
               
              ) 
             
            ] 
           
          
            α 
            = 
            0 
           
         
        = 
        
          T 
         
        = 
        
          
            I 
           
         
        : 
        
          T 
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}=\left[{\frac {\partial }{\partial \alpha }}({\boldsymbol {A}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}={\boldsymbol {T}}={\boldsymbol {\mathsf {I}}}:{\boldsymbol {T}}} 
   
 
Therefore,
  
    
      
        
          
            
              ∂ 
              
                A 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        
          
            I 
           
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}={\boldsymbol {\mathsf {I}}}} 
   
 
Here 
  
    
      
        
          
            I 
           
         
       
     
    {\displaystyle {\boldsymbol {\mathsf {I}}}} 
   
 
  
    
      
        
          
            I 
           
         
        = 
        
          δ 
          
            i 
            k 
           
         
          
        
          δ 
          
            j 
            l 
           
         
          
        
          
            e 
           
          
            i 
           
         
        ⊗ 
        
          
            e 
           
          
            j 
           
         
        ⊗ 
        
          
            e 
           
          
            k 
           
         
        ⊗ 
        
          
            e 
           
          
            l 
           
         
       
     
    {\displaystyle {\boldsymbol {\mathsf {I}}}=\delta _{ik}~\delta _{jl}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}} 
   
 
This result implies that
  
    
      
        
          
            
              ∂ 
              
                
                  A 
                 
                
                  
                    T 
                   
                 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        : 
        
          T 
         
        = 
        
          
            
              I 
             
           
          
            
              T 
             
           
         
        : 
        
          T 
         
        = 
        
          
            T 
           
          
            
              T 
             
           
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {A}}^{\textsf {T}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathsf {I}}}^{\textsf {T}}:{\boldsymbol {T}}={\boldsymbol {T}}^{\textsf {T}}} 
   
 
  
    
      
        
          
            
              I 
             
           
          
            
              T 
             
           
         
        = 
        
          δ 
          
            j 
            k 
           
         
          
        
          δ 
          
            i 
            l 
           
         
          
        
          
            e 
           
          
            i 
           
         
        ⊗ 
        
          
            e 
           
          
            j 
           
         
        ⊗ 
        
          
            e 
           
          
            k 
           
         
        ⊗ 
        
          
            e 
           
          
            l 
           
         
       
     
    {\displaystyle {\boldsymbol {\mathsf {I}}}^{\textsf {T}}=\delta _{jk}~\delta _{il}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}} 
   
 
Therefore, if the tensor 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
  
    
      
        
          
            
              ∂ 
              
                A 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        = 
        
          
            
              I 
             
           
          
            ( 
            s 
            ) 
           
         
        = 
        
          
            1 
            2 
           
         
          
        
          ( 
          
            
              
                I 
               
             
            + 
            
              
                
                  I 
                 
               
              
                
                  T 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}={\boldsymbol {\mathsf {I}}}^{(s)}={\frac {1}{2}}~\left({\boldsymbol {\mathsf {I}}}+{\boldsymbol {\mathsf {I}}}^{\textsf {T}}\right)} 
   
 
  
    
      
        
          
            
              I 
             
           
          
            ( 
            s 
            ) 
           
         
        = 
        
          
            1 
            2 
           
         
          
        ( 
        
          δ 
          
            i 
            k 
           
         
          
        
          δ 
          
            j 
            l 
           
         
        + 
        
          δ 
          
            i 
            l 
           
         
          
        
          δ 
          
            j 
            k 
           
         
        ) 
          
        
          
            e 
           
          
            i 
           
         
        ⊗ 
        
          
            e 
           
          
            j 
           
         
        ⊗ 
        
          
            e 
           
          
            k 
           
         
        ⊗ 
        
          
            e 
           
          
            l 
           
         
       
     
    {\displaystyle {\boldsymbol {\mathsf {I}}}^{(s)}={\frac {1}{2}}~(\delta _{ik}~\delta _{jl}+\delta _{il}~\delta _{jk})~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}} 
   
 
Derivative of the inverse of a second-order tensor 
Let 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                A 
               
             
           
         
        
          ( 
          
            
              A 
             
            
              − 
              1 
             
           
          ) 
         
        : 
        
          T 
         
        = 
        − 
        
          
            A 
           
          
            − 
            1 
           
         
        ⋅ 
        
          T 
         
        ⋅ 
        
          
            A 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-1}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\cdot {\boldsymbol {A}}^{-1}} 
   
 
  
    
      
        
          
            
              ∂ 
              
                A 
                
                  i 
                  j 
                 
                
                  − 
                  1 
                 
               
             
            
              ∂ 
              
                A 
                
                  k 
                  l 
                 
               
             
           
         
          
        
          T 
          
            k 
            l 
           
         
        = 
        − 
        
          A 
          
            i 
            k 
           
          
            − 
            1 
           
         
          
        
          T 
          
            k 
            l 
           
         
          
        
          A 
          
            l 
            j 
           
          
            − 
            1 
           
         
        ⟹ 
        
          
            
              ∂ 
              
                A 
                
                  i 
                  j 
                 
                
                  − 
                  1 
                 
               
             
            
              ∂ 
              
                A 
                
                  k 
                  l 
                 
               
             
           
         
        = 
        − 
        
          A 
          
            i 
            k 
           
          
            − 
            1 
           
         
          
        
          A 
          
            l 
            j 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}~T_{kl}=-A_{ik}^{-1}~T_{kl}~A_{lj}^{-1}\implies {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}=-A_{ik}^{-1}~A_{lj}^{-1}} 
   
 
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                A 
               
             
           
         
        
          ( 
          
            
              A 
             
            
              − 
              
                
                  T 
                 
               
             
           
          ) 
         
        : 
        
          T 
         
        = 
        − 
        
          
            A 
           
          
            − 
            
              
                T 
               
             
           
         
        ⋅ 
        
          
            T 
           
          
            
              T 
             
           
         
        ⋅ 
        
          
            A 
           
          
            − 
            
              
                T 
               
             
           
         
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-{\textsf {T}}}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-{\textsf {T}}}\cdot {\boldsymbol {T}}^{\textsf {T}}\cdot {\boldsymbol {A}}^{-{\textsf {T}}}} 
   
 
  
    
      
        
          
            
              ∂ 
              
                A 
                
                  j 
                  i 
                 
                
                  − 
                  1 
                 
               
             
            
              ∂ 
              
                A 
                
                  k 
                  l 
                 
               
             
           
         
          
        
          T 
          
            k 
            l 
           
         
        = 
        − 
        
          A 
          
            j 
            k 
           
          
            − 
            1 
           
         
          
        
          T 
          
            l 
            k 
           
         
          
        
          A 
          
            l 
            i 
           
          
            − 
            1 
           
         
        ⟹ 
        
          
            
              ∂ 
              
                A 
                
                  j 
                  i 
                 
                
                  − 
                  1 
                 
               
             
            
              ∂ 
              
                A 
                
                  k 
                  l 
                 
               
             
           
         
        = 
        − 
        
          A 
          
            l 
            i 
           
          
            − 
            1 
           
         
          
        
          A 
          
            j 
            k 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle {\frac {\partial A_{ji}^{-1}}{\partial A_{kl}}}~T_{kl}=-A_{jk}^{-1}~T_{lk}~A_{li}^{-1}\implies {\frac {\partial A_{ji}^{-1}}{\partial A_{kl}}}=-A_{li}^{-1}~A_{jk}^{-1}} 
   
 
  
    
      
        
          A 
         
       
     
    {\displaystyle {\boldsymbol {A}}} 
   
 
  
    
      
        
          
            
              ∂ 
              
                A 
                
                  i 
                  j 
                 
                
                  − 
                  1 
                 
               
             
            
              ∂ 
              
                A 
                
                  k 
                  l 
                 
               
             
           
         
        = 
        − 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  2 
                 
               
             
           
         
        
          ( 
          
            
              A 
              
                i 
                k 
               
              
                − 
                1 
               
             
              
            
              A 
              
                j 
                l 
               
              
                − 
                1 
               
             
            + 
            
              A 
              
                i 
                l 
               
              
                − 
                1 
               
             
              
            
              A 
              
                j 
                k 
               
              
                − 
                1 
               
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}=-{\cfrac {1}{2}}\left(A_{ik}^{-1}~A_{jl}^{-1}+A_{il}^{-1}~A_{jk}^{-1}\right)} 
   
 
Proof 
Recall that
  
    
      
        
          
            
              ∂ 
              
                
                  1 
                 
               
             
            
              ∂ 
              
                A 
               
             
           
         
        : 
        
          T 
         
        = 
        
          
            0 
           
         
       
     
    {\displaystyle {\frac {\partial {\boldsymbol {\mathit {1}}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathit {0}}}} 
   
 
Since 
  
    
      
        
          
            A 
           
          
            − 
            1 
           
         
        ⋅ 
        
          A 
         
        = 
        
          
            1 
           
         
       
     
    {\displaystyle {\boldsymbol {A}}^{-1}\cdot {\boldsymbol {A}}={\boldsymbol {\mathit {1}}}} 
   
 
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                A 
               
             
           
         
        
          ( 
          
            
              
                A 
               
              
                − 
                1 
               
             
            ⋅ 
            
              A 
             
           
          ) 
         
        : 
        
          T 
         
        = 
        
          
            0 
           
         
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {A}}\right):{\boldsymbol {T}}={\boldsymbol {\mathit {0}}}} 
   
 
Using the product rule for second order tensors
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                S 
               
             
           
         
        [ 
        
          
            F 
           
          
            1 
           
         
        ( 
        
          S 
         
        ) 
        ⋅ 
        
          
            F 
           
          
            2 
           
         
        ( 
        
          S 
         
        ) 
        ] 
        : 
        
          T 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
        ⋅ 
        
          
            F 
           
          
            2 
           
         
        + 
        
          
            F 
           
          
            1 
           
         
        ⋅ 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      F 
                     
                    
                      2 
                     
                   
                 
                
                  ∂ 
                  
                    S 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {S}}}}[{\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})]:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {F}}_{2}+{\boldsymbol {F}}_{1}\cdot \left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} 
   
 
we get
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                A 
               
             
           
         
        ( 
        
          
            A 
           
          
            − 
            1 
           
         
        ⋅ 
        
          A 
         
        ) 
        : 
        
          T 
         
        = 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      A 
                     
                    
                      − 
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
        ⋅ 
        
          A 
         
        + 
        
          
            A 
           
          
            − 
            1 
           
         
        ⋅ 
        
          ( 
          
            
              
                
                  ∂ 
                  
                    A 
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
        = 
        
          
            0 
           
         
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {A}}):{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {A}}^{-1}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {A}}+{\boldsymbol {A}}^{-1}\cdot \left({\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}\right)={\boldsymbol {\mathit {0}}}} 
   
 
  
    
      
        
          ( 
          
            
              
                
                  ∂ 
                  
                    
                      A 
                     
                    
                      − 
                      1 
                     
                   
                 
                
                  ∂ 
                  
                    A 
                   
                 
               
             
            : 
            
              T 
             
           
          ) 
         
        ⋅ 
        
          A 
         
        = 
        − 
        
          
            A 
           
          
            − 
            1 
           
         
        ⋅ 
        
          T 
         
       
     
    {\displaystyle \left({\frac {\partial {\boldsymbol {A}}^{-1}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {A}}=-{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}} 
   
 
Therefore,
  
    
      
        
          
            ∂ 
            
              ∂ 
              
                A 
               
             
           
         
        
          ( 
          
            
              A 
             
            
              − 
              1 
             
           
          ) 
         
        : 
        
          T 
         
        = 
        − 
        
          
            A 
           
          
            − 
            1 
           
         
        ⋅ 
        
          T 
         
        ⋅ 
        
          
            A 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-1}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\cdot {\boldsymbol {A}}^{-1}} 
   
 
Integration by parts 
Domain 
  
    
      
        Ω 
       
     
    {\displaystyle \Omega } 
   
 
  
    
      
        Γ 
       
     
    {\displaystyle \Gamma } 
   
 
  
    
      
        
          n 
         
       
     
    {\displaystyle \mathbf {n} } 
   
  Another important operation related to tensor derivatives in continuum mechanics is integration by parts. The formula for integration by parts can be written as
  
    
      
        
          ∫ 
          
            Ω 
           
         
        
          F 
         
        ⊗ 
        
          ∇ 
         
        
          G 
         
        d 
        Ω 
        = 
        
          ∫ 
          
            Γ 
           
         
        
          n 
         
        ⊗ 
        ( 
        
          F 
         
        ⊗ 
        
          G 
         
        ) 
        d 
        Γ 
        − 
        
          ∫ 
          
            Ω 
           
         
        
          G 
         
        ⊗ 
        
          ∇ 
         
        
          F 
         
        d 
        Ω 
       
     
    {\displaystyle \int _{\Omega }{\boldsymbol {F}}\otimes {\boldsymbol {\nabla }}{\boldsymbol {G}}\,d\Omega =\int _{\Gamma }\mathbf {n} \otimes ({\boldsymbol {F}}\otimes {\boldsymbol {G}})\,d\Gamma -\int _{\Omega }{\boldsymbol {G}}\otimes {\boldsymbol {\nabla }}{\boldsymbol {F}}\,d\Omega } 
   
 
where 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 
  
    
      
        
          G 
         
       
     
    {\displaystyle {\boldsymbol {G}}} 
   
 
  
    
      
        
          n 
         
       
     
    {\displaystyle \mathbf {n} } 
   
 
  
    
      
        ⊗ 
       
     
    {\displaystyle \otimes } 
   
 
  
    
      
        
          ∇ 
         
       
     
    {\displaystyle {\boldsymbol {\nabla }}} 
   
 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 divergence theorem 
  
    
      
        
          ∫ 
          
            Ω 
           
         
        
          ∇ 
         
        
          G 
         
        d 
        Ω 
        = 
        
          ∫ 
          
            Γ 
           
         
        
          n 
         
        ⊗ 
        
          G 
         
        d 
        Γ 
        . 
       
     
    {\displaystyle \int _{\Omega }{\boldsymbol {\nabla }}{\boldsymbol {G}}\,d\Omega =\int _{\Gamma }\mathbf {n} \otimes {\boldsymbol {G}}\,d\Gamma \,.} 
   
 
We can express the formula for integration by parts in Cartesian index notation as
  
    
      
        
          ∫ 
          
            Ω 
           
         
        
          F 
          
            i 
            j 
            k 
            . 
            . 
            . 
            . 
           
         
        
          G 
          
            l 
            m 
            n 
            . 
            . 
            . 
            , 
            p 
           
         
        d 
        Ω 
        = 
        
          ∫ 
          
            Γ 
           
         
        
          n 
          
            p 
           
         
        
          F 
          
            i 
            j 
            k 
            . 
            . 
            . 
           
         
        
          G 
          
            l 
            m 
            n 
            . 
            . 
            . 
           
         
        d 
        Γ 
        − 
        
          ∫ 
          
            Ω 
           
         
        
          G 
          
            l 
            m 
            n 
            . 
            . 
            . 
           
         
        
          F 
          
            i 
            j 
            k 
            . 
            . 
            . 
            , 
            p 
           
         
        d 
        Ω 
        . 
       
     
    {\displaystyle \int _{\Omega }F_{ijk....}\,G_{lmn...,p}\,d\Omega =\int _{\Gamma }n_{p}\,F_{ijk...}\,G_{lmn...}\,d\Gamma -\int _{\Omega }G_{lmn...}\,F_{ijk...,p}\,d\Omega \,.} 
   
 
For the special case where the tensor product operation is a contraction of one index and the gradient operation is a divergence, and both 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 
  
    
      
        
          G 
         
       
     
    {\displaystyle {\boldsymbol {G}}} 
   
 
  
    
      
        
          ∫ 
          
            Ω 
           
         
        
          F 
         
        ⋅ 
        ( 
        
          ∇ 
         
        ⋅ 
        
          G 
         
        ) 
        d 
        Ω 
        = 
        
          ∫ 
          
            Γ 
           
         
        
          n 
         
        ⋅ 
        
          ( 
          
            
              G 
             
            ⋅ 
            
              
                F 
               
              
                
                  T 
                 
               
             
           
          ) 
         
        d 
        Γ 
        − 
        
          ∫ 
          
            Ω 
           
         
        ( 
        
          ∇ 
         
        
          F 
         
        ) 
        : 
        
          
            G 
           
          
            
              T 
             
           
         
        d 
        Ω 
        . 
       
     
    {\displaystyle \int _{\Omega }{\boldsymbol {F}}\cdot ({\boldsymbol {\nabla }}\cdot {\boldsymbol {G}})\,d\Omega =\int _{\Gamma }\mathbf {n} \cdot \left({\boldsymbol {G}}\cdot {\boldsymbol {F}}^{\textsf {T}}\right)\,d\Gamma -\int _{\Omega }({\boldsymbol {\nabla }}{\boldsymbol {F}}):{\boldsymbol {G}}^{\textsf {T}}\,d\Omega \,.} 
   
 
  
    
      
        
          ∫ 
          
            Ω 
           
         
        
          F 
          
            i 
            j 
           
         
        
          G 
          
            p 
            j 
            , 
            p 
           
         
        d 
        Ω 
        = 
        
          ∫ 
          
            Γ 
           
         
        
          n 
          
            p 
           
         
        
          F 
          
            i 
            j 
           
         
        
          G 
          
            p 
            j 
           
         
        d 
        Γ 
        − 
        
          ∫ 
          
            Ω 
           
         
        
          G 
          
            p 
            j 
           
         
        
          F 
          
            i 
            j 
            , 
            p 
           
         
        d 
        Ω 
        . 
       
     
    {\displaystyle \int _{\Omega }F_{ij}\,G_{pj,p}\,d\Omega =\int _{\Gamma }n_{p}\,F_{ij}\,G_{pj}\,d\Gamma -\int _{\Omega }G_{pj}\,F_{ij,p}\,d\Omega \,.} 
   
 
See also 
References 
^ Simo, J. C.; Hughes, T. J. R. (1998). Computational Inelasticity . Springer. doi :10.1007/b98904 . ISBN  978-0-387-97520-7 . ^ Marsden, Jerrold E.; Hughes, Thomas J. R. (2000). Mathematical Foundations of Elasticity . Dover. ISBN  978-0-486-678658 . ^ Ogden, R. W. (2000). Nonlinear Elastic Deformations . Dover. ISBN  978-0-486-696485 . ^ a b   Hjelmstad, Keith (2004). Fundamentals of Structural Mechanics . Springer Science & Business Media. p. 45. ISBN  978-0-387-233307 .