Visualization of gradient descent with one flow line In differential geometry , the Seiberg–Witten flow  is a gradient flow  described by the Seiberg–Witten equations , hence a method to describe a gradient descent  of the Seiberg–Witten action functional. Simply put, the Seiberg–Witten flow is a path always going in the direction of steepest descent, similar to the path of a ball rolling down a hill. This helps to find critical points , called (Seiberg–Witten)  monopoles 
The Seiberg–Witten flow is named after Nathan Seiberg  and Edward Witten , who first formulated the underlying Seiberg–Witten theory  in 1994.
Definition 
Let 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 compact  orientable  Riemannian  4-manifold . Every such manifold has a spinc  structure ,[ 1] classifying map  
  
    
      
        f 
        : 
        M 
        → 
        BSO 
         
        ( 
        4 
        ) 
       
     
    {\displaystyle f\colon M\rightarrow \operatorname {BSO} (4)} 
   
 tangent bundle  
  
    
      
        T 
        M 
       
     
    {\displaystyle TM} 
   
 
  
    
      
        T 
        M 
        ≅ 
        
          f 
          
            ∗ 
           
         
        
          
            
              
                γ 
                ~ 
               
             
           
          
            
              R 
             
           
          
            4 
           
         
       
     
    {\displaystyle TM\cong f^{*}{\widetilde {\gamma }}_{\mathbb {R} }^{4}} 
   
 pullback bundle  of the oriented tautological bundle  along it) to a continuous map  
  
    
      
        
          
            
              f 
              ^ 
             
           
         
        : 
        M 
        → 
        
          BSpin 
          
            
              c 
             
           
         
         
        ( 
        4 
        ) 
       
     
    {\displaystyle {\widehat {f}}\colon M\rightarrow \operatorname {BSpin} ^{\mathrm {c} }(4)} 
   
 
  
    
      
        
          Spin 
          
            
              c 
             
           
         
         
        ( 
        4 
        ) 
        ↠ 
        SO 
         
        ( 
        4 
        ) 
       
     
    {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(4)\twoheadrightarrow \operatorname {SO} (4)} 
   
 c  structures correspond exactly to the second singular cohomology  
  
    
      
        
          H 
          
            2 
           
         
        ( 
        M 
        , 
        
          Z 
         
        ) 
        ≅ 
        [ 
        M 
        , 
        BU 
         
        ( 
        1 
        ) 
        ] 
       
     
    {\displaystyle H^{2}(M,\mathbb {Z} )\cong [M,\operatorname {BU} (1)]} 
   
 
  
    
      
        
          Spin 
          
            
              c 
             
           
         
         
        ( 
        4 
        ) 
        ≅ 
        U 
         
        ( 
        2 
        ) 
        
          × 
          
            U 
             
            ( 
            1 
            ) 
           
         
        U 
         
        ( 
        2 
        ) 
        ≅ 
        
          { 
          
            
              A 
              
                ± 
               
             
            ∈ 
            U 
             
            ( 
            2 
            ) 
            
              | 
             
            det 
            ( 
            
              A 
              
                − 
               
             
            ) 
            = 
            det 
            ( 
            
              A 
              
                + 
               
             
            ) 
           
          } 
         
        , 
       
     
    {\displaystyle \operatorname {Spin} ^{\mathrm {c} }(4)\cong \operatorname {U} (2)\times _{\operatorname {U} (1)}\operatorname {U} (2)\cong \left\{A^{\pm }\in \operatorname {U} (2)|\det(A^{-})=\det(A^{+})\right\},} 
   
 the spinc  structure classifies complex plane bundles 
  
    
      
        
          S 
          
            ± 
           
         
        ↠ 
        M 
       
     
    {\displaystyle S^{\pm }\twoheadrightarrow M} 
   
 determinant line bundle  
  
    
      
        L 
        = 
        det 
        ( 
        
          S 
          
            ± 
           
         
        ) 
       
     
    {\displaystyle L=\det(S^{\pm })} 
   
 frame bundle , it corresponds to a principal U(1)-bundle  
  
    
      
        
          Fr 
          
            U 
           
         
         
        ( 
        L 
        ) 
        ↠ 
        M 
       
     
    {\displaystyle \operatorname {Fr} _{\operatorname {U} }(L)\twoheadrightarrow M} 
   
 
  
    
      
        L 
        ≅ 
        
          Fr 
          
            U 
           
         
         
        ( 
        L 
        ) 
        
          × 
          
            U 
             
            ( 
            1 
            ) 
           
         
        
          C 
         
       
     
    {\displaystyle L\cong \operatorname {Fr} _{\operatorname {U} }(L)\times _{\operatorname {U} (1)}\mathbb {C} } 
   
 balanced product  and with trivial adjoint bundle 
  
    
      
        Ad 
         
        
          Fr 
          
            U 
           
         
         
        ( 
        L 
        ) 
        ≅ 
        
          
            End 
            _ 
           
         
        ( 
        L 
        ) 
        ≅ 
        
          
            
              C 
             
            _ 
           
         
       
     
    {\displaystyle \operatorname {Ad} \operatorname {Fr} _{\operatorname {U} }(L)\cong {\underline {\operatorname {End} }}(L)\cong {\underline {\mathbb {C} }}} 
   
 
  
    
      
        S 
        = 
        
          S 
          
            − 
           
         
        ⊕ 
        
          S 
          
            + 
           
         
       
     
    {\displaystyle S=S^{-}\oplus S^{+}} 
   
 Whitney sum . Since the determinant line bundle preserves the first Chern class , which also describes the isomorphism required between cohomology and homotopy classes  here, one has 
  
    
      
        
          c 
          
            1 
           
         
        ( 
        L 
        ) 
        = 
        
          c 
          
            1 
           
         
        ( 
        
          S 
          
            ± 
           
         
        ) 
        ∈ 
        
          H 
          
            2 
           
         
        ( 
        M 
        , 
        
          Z 
         
        ) 
        ≅ 
        [ 
        M 
        , 
        BU 
         
        ( 
        1 
        ) 
        ] 
       
     
    {\displaystyle c_{1}(L)=c_{1}(S^{\pm })\in H^{2}(M,\mathbb {Z} )\cong [M,\operatorname {BU} (1)]} 
   
 c  structure. For a connection  
  
    
      
        A 
        ∈ 
        
          Ω 
          
            Ad 
           
          
            1 
           
         
        ( 
        
          Fr 
          
            U 
           
         
         
        ( 
        L 
        ) 
        , 
        
          
            u 
           
         
        ( 
        1 
        ) 
        ) 
        ≅ 
        
          Ω 
          
            1 
           
         
        ( 
        B 
        ) 
       
     
    {\displaystyle A\in \Omega _{\operatorname {Ad} }^{1}(\operatorname {Fr} _{\operatorname {U} }(L),{\mathfrak {u}}(1))\cong \Omega ^{1}(B)} 
   
 curvature form  
  
    
      
        
          F 
          
            A 
           
         
        = 
        
          d 
         
        A 
       
     
    {\displaystyle F_{A}=\mathrm {d} A} 
   
 Chern–Weil theory :
  
    
      
        − 
        8 
        
          π 
          
            2 
           
         
        
          c 
          
            1 
           
         
        ( 
        L 
        ) 
        = 
        
          ∫ 
          
            B 
           
         
        tr 
         
        ( 
        
          F 
          
            A 
           
         
        ∧ 
        
          F 
          
            A 
           
         
        ) 
        
          d 
         
        
          vol 
          
            g 
           
         
        = 
        
          ∫ 
          
            B 
           
         
        
          | 
         
        
          F 
          
            A 
           
          
            + 
           
         
        
          
            | 
           
          
            2 
           
         
        − 
        
          | 
         
        
          F 
          
            A 
           
          
            − 
           
         
        
          
            | 
           
          
            2 
           
         
        
          d 
         
        
          vol 
          
            g 
           
         
        . 
       
     
    {\displaystyle -8\pi ^{2}c_{1}(L)=\int _{B}\operatorname {tr} (F_{A}\wedge F_{A})\mathrm {d} \operatorname {vol} _{g}=\int _{B}|F_{A}^{+}|^{2}-|F_{A}^{-}|^{2}\mathrm {d} \operatorname {vol} _{g}.} 
   
 The Seiberg–Witten action functional  is given by:[ 2] [ 3] 
  
    
      
        SW 
        : 
        
          Ω 
          
            1 
           
         
        ( 
        M 
        , 
        Ad 
         
        ( 
        L 
        ) 
        ) 
        × 
        
          Γ 
          
            ∞ 
           
         
        ( 
        M 
        , 
        
          S 
          
            + 
           
         
        ) 
        → 
        
          R 
         
        , 
        SW 
         
        ( 
        A 
        , 
        Φ 
        ) 
        := 
        
          ∫ 
          
            B 
           
         
        
          
            1 
            2 
           
         
        ‖ 
        
          F 
          
            A 
           
          
            + 
           
         
        
          ‖ 
          
            2 
           
         
        + 
        ‖ 
        
          ∇ 
          
            A 
           
         
        Φ 
        
          ‖ 
          
            2 
           
         
        + 
        
          
            scal 
            4 
           
         
        ‖ 
        Φ 
        
          ‖ 
          
            2 
           
         
        + 
        
          
            1 
            8 
           
         
        ‖ 
        Φ 
        
          ‖ 
          
            4 
           
         
        
          d 
         
        
          vol 
          
            g 
           
         
        . 
       
     
    {\displaystyle \operatorname {SW} \colon \Omega ^{1}(M,\operatorname {Ad} (L))\times \Gamma ^{\infty }(M,S^{+})\rightarrow \mathbb {R} ,\operatorname {SW} (A,\Phi ):=\int _{B}{\frac {1}{2}}\|F_{A}^{+}\|^{2}+\|\nabla _{A}\Phi \|^{2}+{\frac {\operatorname {scal} }{4}}\|\Phi \|^{2}+{\frac {1}{8}}\|\Phi \|^{4}\mathrm {d} \operatorname {vol} _{g}.} 
   
 with 
  
    
      
        scal 
       
     
    {\displaystyle \operatorname {scal} } 
   
 scalar curvature . Using the following relation from Chern–Weil theory :
  
    
      
        ‖ 
        
          F 
          
            A 
           
          
            + 
           
         
        
          ‖ 
          
            
              L 
              
                2 
               
             
           
         
        = 
        2 
        ‖ 
        
          F 
          
            A 
           
         
        
          ‖ 
          
            
              L 
              
                2 
               
             
           
         
        − 
        4 
        
          π 
          
            2 
           
         
        
          c 
          
            1 
           
         
        ( 
        L 
        
          ) 
          
            2 
           
         
        , 
       
     
    {\displaystyle \|F_{A}^{+}\|_{L^{2}}=2\|F_{A}\|_{L^{2}}-4\pi ^{2}c_{1}(L)^{2},} 
   
 it can also be rewritten as:
  
    
      
        SW 
         
        ( 
        A 
        , 
        Φ 
        ) 
        := 
        
          ∫ 
          
            B 
           
         
        ‖ 
        
          F 
          
            A 
           
         
        
          ‖ 
          
            2 
           
         
        + 
        ‖ 
        
          ∇ 
          
            A 
           
         
        Φ 
        
          ‖ 
          
            2 
           
         
        + 
        
          
            scal 
            4 
           
         
        ‖ 
        Φ 
        
          ‖ 
          
            2 
           
         
        + 
        
          
            1 
            8 
           
         
        ‖ 
        Φ 
        
          ‖ 
          
            4 
           
         
        
          d 
         
        
          vol 
          
            g 
           
         
        + 
        
          π 
          
            2 
           
         
        
          c 
          
            1 
           
         
        ( 
        L 
        
          ) 
          
            2 
           
         
        , 
       
     
    {\displaystyle \operatorname {SW} (A,\Phi ):=\int _{B}\|F_{A}\|^{2}+\|\nabla _{A}\Phi \|^{2}+{\frac {\operatorname {scal} }{4}}\|\Phi \|^{2}+{\frac {1}{8}}\|\Phi \|^{4}\mathrm {d} \operatorname {vol} _{g}+\pi ^{2}c_{1}(L)^{2},} 
   
 but the last term is constant and can be obmitted. Its first two terms are also called Yang–Mills–Higgs action  and its first term is also called Yang–Mills action .
Hence the gradient of the Seiberg–Witten action functional gives exactly the Seiberg–Witten equations :
  
    
      
        grad 
         
        ( 
        SW 
        ) 
        ( 
        A 
        , 
        Φ 
        
          ) 
          
            1 
           
         
        = 
        
          
            d 
           
          
            ∗ 
           
         
        
          F 
          
            A 
           
         
        + 
        i 
        Im 
         
        ⟨ 
        
          ∇ 
          
            A 
           
         
        Φ 
        , 
        Φ 
        ⟩ 
        , 
       
     
    {\displaystyle \operatorname {grad} (\operatorname {SW} )(A,\Phi )_{1}=\mathrm {d} ^{*}F_{A}+i\operatorname {Im} \langle \nabla _{A}\Phi ,\Phi \rangle ,} 
   
 
  
    
      
        grad 
         
        ( 
        SW 
        ) 
        ( 
        A 
        , 
        Φ 
        
          ) 
          
            2 
           
         
        = 
        
          ∇ 
          
            A 
           
          
            ∗ 
           
         
        
          ∇ 
          
            A 
           
         
        Φ 
        − 
        
          
            1 
            4 
           
         
        ( 
        scal 
        + 
        ‖ 
        Φ 
        
          ‖ 
          
            2 
           
         
        ) 
        Φ 
        . 
       
     
    {\displaystyle \operatorname {grad} (\operatorname {SW} )(A,\Phi )_{2}=\nabla _{A}^{*}\nabla _{A}\Phi -{\frac {1}{4}}(\operatorname {scal} +\|\Phi \|^{2})\Phi .} 
   
 For an open interval  
  
    
      
        I 
        ⊆ 
        
          R 
         
       
     
    {\displaystyle I\subseteq \mathbb {R} } 
   
 
  
    
      
        
          C 
          
            1 
           
         
       
     
    {\displaystyle C^{1}} 
   
 
  
    
      
        α 
        : 
        I 
        → 
        
          Ω 
          
            1 
           
         
        ( 
        M 
        , 
        Ad 
         
        ( 
        L 
        ) 
        ) 
       
     
    {\displaystyle \alpha \colon I\rightarrow \Omega ^{1}(M,\operatorname {Ad} (L))} 
   
 
  
    
      
        φ 
        : 
        I 
        → 
        
          Γ 
          
            ∞ 
           
         
        ( 
        M 
        , 
        
          S 
          
            + 
           
         
        ) 
       
     
    {\displaystyle \varphi \colon I\rightarrow \Gamma ^{\infty }(M,S^{+})} 
   
 continuously differentiable ) fulfilling:
  
    
      
        
          α 
          ′ 
         
        ( 
        t 
        ) 
        = 
        − 
        grad 
         
        ( 
        SW 
        ) 
        ( 
        α 
        ( 
        t 
        ) 
        , 
        φ 
        ( 
        t 
        ) 
        
          ) 
          
            1 
           
         
        = 
        − 
        
          
            d 
           
          
            ∗ 
           
         
        
          F 
          
            α 
            ( 
            t 
            ) 
           
         
        − 
        i 
        Im 
         
        ⟨ 
        
          ∇ 
          
            α 
            ( 
            t 
            ) 
           
         
        φ 
        ( 
        t 
        ) 
        , 
        φ 
        ( 
        t 
        ) 
        ⟩ 
       
     
    {\displaystyle \alpha '(t)=-\operatorname {grad} (\operatorname {SW} )(\alpha (t),\varphi (t))_{1}=-\mathrm {d} ^{*}F_{\alpha (t)}-i\operatorname {Im} \langle \nabla _{\alpha (t)}\varphi (t),\varphi (t)\rangle } 
   
 
  
    
      
        
          φ 
          ′ 
         
        ( 
        t 
        ) 
        = 
        − 
        grad 
         
        ( 
        SW 
        ) 
        ( 
        α 
        ( 
        t 
        ) 
        , 
        φ 
        ( 
        t 
        ) 
        
          ) 
          
            2 
           
         
        = 
        − 
        
          ∇ 
          
            α 
            ( 
            t 
            ) 
           
          
            ∗ 
           
         
        
          ∇ 
          
            α 
            ( 
            t 
            ) 
           
         
        φ 
        ( 
        t 
        ) 
        − 
        
          
            1 
            4 
           
         
        ( 
        scal 
        + 
        ‖ 
        φ 
        ( 
        t 
        ) 
        
          ‖ 
          
            2 
           
         
        ) 
        φ 
        ( 
        t 
        ) 
       
     
    {\displaystyle \varphi '(t)=-\operatorname {grad} (\operatorname {SW} )(\alpha (t),\varphi (t))_{2}=-\nabla _{\alpha (t)}^{*}\nabla _{\alpha (t)}\varphi (t)-{\frac {1}{4}}(\operatorname {scal} +\|\varphi (t)\|^{2})\varphi (t)} 
   
 are a Seiberg–Witten flow .[ 4] [ 5] 
Literature 
See also 
External links 
References 
^ Nicolaescu, Example 1.3.16 
^ Hong & Schabrun 2009, Eq. (4) 
^ Schabrun 2010, Eq. (2) & (4) 
^ Hong & Schabrun 2009, Eq. (9) & (10) 
^ Schabrun 2010, Eq. (7) & (8)