In continuum mechanics , a Mooney–Rivlin solid [ 1] [ 2] hyperelastic material  model where the strain energy density function  
  
    
      
        W 
         
     
    {\displaystyle W\,} 
   
 invariants  of the left Cauchy–Green deformation tensor  
  
    
      
        
          B 
         
       
     
    {\displaystyle {\boldsymbol {B}}} 
   
 Melvin Mooney  in 1940 and expressed in terms of invariants by Ronald Rivlin  in 1948.
The strain energy density function for an incompressible  Mooney–Rivlin material is[ 3] [ 4] 
  
    
      
        W 
        = 
        
          C 
          
            1 
           
         
        ( 
        
          
            
              
                I 
                ¯ 
               
             
           
          
            1 
           
         
        − 
        3 
        ) 
        + 
        
          C 
          
            2 
           
         
        ( 
        
          
            
              
                I 
                ¯ 
               
             
           
          
            2 
           
         
        − 
        3 
        ) 
        , 
         
     
    {\displaystyle W=C_{1}({\bar {I}}_{1}-3)+C_{2}({\bar {I}}_{2}-3),\,} 
   
 where 
  
    
      
        
          C 
          
            1 
           
         
       
     
    {\displaystyle C_{1}} 
   
 
  
    
      
        
          C 
          
            2 
           
         
       
     
    {\displaystyle C_{2}} 
   
 
  
    
      
        
          
            
              
                I 
                ¯ 
               
             
           
          
            1 
           
         
       
     
    {\displaystyle {\bar {I}}_{1}} 
   
 
  
    
      
        
          
            
              
                I 
                ¯ 
               
             
           
          
            2 
           
         
       
     
    {\displaystyle {\bar {I}}_{2}} 
   
 invariant  of 
  
    
      
        
          
            
              B 
              ¯ 
             
           
         
        = 
        ( 
        det 
        
          B 
         
        
          ) 
          
            − 
            1 
            
              / 
             
            3 
           
         
        
          B 
         
       
     
    {\displaystyle {\bar {\boldsymbol {B}}}=(\det {\boldsymbol {B}})^{-1/3}{\boldsymbol {B}}} 
   
 unimodular  component of 
  
    
      
        
          B 
         
       
     
    {\displaystyle {\boldsymbol {B}}} 
   
 [ 5] 
  
    
      
        
          
            
              
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
               
              
                = 
                
                  J 
                  
                    − 
                    2 
                    
                      / 
                     
                    3 
                   
                 
                  
                
                  I 
                  
                    1 
                   
                 
                , 
                
                  I 
                  
                    1 
                   
                 
                = 
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
                , 
               
             
            
              
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                 
               
              
                = 
                
                  J 
                  
                    − 
                    4 
                    
                      / 
                     
                    3 
                   
                 
                  
                
                  I 
                  
                    2 
                   
                 
                , 
                
                  I 
                  
                    2 
                   
                 
                = 
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\bar {I}}_{1}&=J^{-2/3}~I_{1},\quad I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2},\\{\bar {I}}_{2}&=J^{-4/3}~I_{2},\quad I_{2}=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\end{aligned}}} 
   
 where 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 deformation gradient  and 
  
    
      
        J 
        = 
        det 
        ( 
        
          F 
         
        ) 
        = 
        
          λ 
          
            1 
           
         
        
          λ 
          
            2 
           
         
        
          λ 
          
            3 
           
         
       
     
    {\displaystyle J=\det({\boldsymbol {F}})=\lambda _{1}\lambda _{2}\lambda _{3}} 
   
 
  
    
      
        J 
        = 
        1 
       
     
    {\displaystyle J=1} 
   
 
Derivation 
The Mooney–Rivlin model is a special case of the generalized Rivlin model  (also called polynomial hyperelastic model [ 6] 
  
    
      
        W 
        = 
        
          ∑ 
          
            p 
            , 
            q 
            = 
            0 
           
          
            N 
           
         
        
          C 
          
            p 
            q 
           
         
        ( 
        
          
            
              
                I 
                ¯ 
               
             
           
          
            1 
           
         
        − 
        3 
        
          ) 
          
            p 
           
         
          
        ( 
        
          
            
              
                I 
                ¯ 
               
             
           
          
            2 
           
         
        − 
        3 
        
          ) 
          
            q 
           
         
        + 
        
          ∑ 
          
            m 
            = 
            1 
           
          
            M 
           
         
        
          
            1 
            
              D 
              
                m 
               
             
           
         
          
        ( 
        J 
        − 
        1 
        
          ) 
          
            2 
            m 
           
         
       
     
    {\displaystyle W=\sum _{p,q=0}^{N}C_{pq}({\bar {I}}_{1}-3)^{p}~({\bar {I}}_{2}-3)^{q}+\sum _{m=1}^{M}{\frac {1}{D_{m}}}~(J-1)^{2m}} 
   
 with 
  
    
      
        
          C 
          
            00 
           
         
        = 
        0 
       
     
    {\displaystyle C_{00}=0} 
   
 
  
    
      
        
          C 
          
            p 
            q 
           
         
       
     
    {\displaystyle C_{pq}} 
   
 
  
    
      
        
          D 
          
            m 
           
         
       
     
    {\displaystyle D_{m}} 
   
 compressible  Mooney–Rivlin material 
  
    
      
        N 
        = 
        1 
        , 
        
          C 
          
            01 
           
         
        = 
        
          C 
          
            2 
           
         
        , 
        
          C 
          
            11 
           
         
        = 
        0 
        , 
        
          C 
          
            10 
           
         
        = 
        
          C 
          
            1 
           
         
        , 
        M 
        = 
        1 
       
     
    {\displaystyle N=1,C_{01}=C_{2},C_{11}=0,C_{10}=C_{1},M=1} 
   
 
  
    
      
        W 
        = 
        
          C 
          
            01 
           
         
          
        ( 
        
          
            
              
                I 
                ¯ 
               
             
           
          
            2 
           
         
        − 
        3 
        ) 
        + 
        
          C 
          
            10 
           
         
          
        ( 
        
          
            
              
                I 
                ¯ 
               
             
           
          
            1 
           
         
        − 
        3 
        ) 
        + 
        
          
            1 
            
              D 
              
                1 
               
             
           
         
          
        ( 
        J 
        − 
        1 
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle W=C_{01}~({\bar {I}}_{2}-3)+C_{10}~({\bar {I}}_{1}-3)+{\frac {1}{D_{1}}}~(J-1)^{2}} 
   
 If 
  
    
      
        
          C 
          
            01 
           
         
        = 
        0 
       
     
    {\displaystyle C_{01}=0} 
   
 neo-Hookean solid , a special case of a Mooney–Rivlin solid .
For consistency with linear elasticity  in the limit of small strains , it is necessary that
  
    
      
        κ 
        = 
        2 
        
          / 
         
        
          D 
          
            1 
           
         
          
        ; 
          
          
        μ 
        = 
        2 
          
        ( 
        
          C 
          
            01 
           
         
        + 
        
          C 
          
            10 
           
         
        ) 
       
     
    {\displaystyle \kappa =2/D_{1}~;~~\mu =2~(C_{01}+C_{10})} 
   
 where 
  
    
      
        κ 
       
     
    {\displaystyle \kappa } 
   
 bulk modulus  and 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 shear modulus .
The Cauchy stress  in a compressible  hyperelastic material with a stress free reference configuration is given by
  
    
      
        
          σ 
         
        = 
        
          
            
              
                 
              
                
                  2 
                 
               
             
            
              
                 
              
                
                  J 
                 
               
             
           
         
        
          [ 
          
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          2 
                          
                            / 
                           
                          3 
                         
                       
                     
                   
                 
               
             
            
              ( 
              
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            W 
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            
                              
                                
                                  I 
                                  ¯ 
                                 
                               
                             
                            
                              1 
                             
                           
                         
                       
                     
                   
                 
                + 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                  
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            W 
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            
                              
                                
                                  I 
                                  ¯ 
                                 
                               
                             
                            
                              2 
                             
                           
                         
                       
                     
                   
                 
               
              ) 
             
            
              B 
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          4 
                          
                            / 
                           
                          3 
                         
                       
                     
                   
                 
               
             
              
            
              
                
                  
                     
                  
                    
                      ∂ 
                      
                        W 
                       
                     
                   
                 
                
                  
                     
                  
                    
                      ∂ 
                      
                        
                          
                            
                              I 
                              ¯ 
                             
                           
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
              
            
              B 
             
            ⋅ 
            
              B 
             
           
          ] 
         
        + 
        
          [ 
          
            
              
                
                  
                     
                  
                    
                      ∂ 
                      
                        W 
                       
                     
                   
                 
                
                  
                     
                  
                    
                      ∂ 
                      J 
                     
                   
                 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      2 
                     
                   
                 
                
                  
                     
                  
                    
                      3 
                      J 
                     
                   
                 
               
             
            
              ( 
              
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                  
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            W 
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            
                              
                                
                                  I 
                                  ¯ 
                                 
                               
                             
                            
                              1 
                             
                           
                         
                       
                     
                   
                 
                + 
                2 
                  
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                 
                  
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            W 
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            
                              
                                
                                  I 
                                  ¯ 
                                 
                               
                             
                            
                              2 
                             
                           
                         
                       
                     
                   
                 
               
              ) 
             
           
          ] 
         
          
        
          I 
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}={\cfrac {2}{J}}\left[{\cfrac {1}{J^{2/3}}}\left({\cfrac {\partial {W}}{\partial {\bar {I}}_{1}}}+{\bar {I}}_{1}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}\right){\boldsymbol {B}}-{\cfrac {1}{J^{4/3}}}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}\right]+\left[{\cfrac {\partial {W}}{\partial J}}-{\cfrac {2}{3J}}\left({\bar {I}}_{1}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{1}}}+2~{\bar {I}}_{2}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}\right)\right]~{\boldsymbol {I}}} 
   
 For a compressible Mooney–Rivlin material,
  
    
      
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    
                      
                        
                          I 
                          ¯ 
                         
                       
                     
                    
                      1 
                     
                   
                 
               
             
           
         
        = 
        
          C 
          
            1 
           
         
          
        ; 
          
          
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    
                      
                        
                          I 
                          ¯ 
                         
                       
                     
                    
                      2 
                     
                   
                 
               
             
           
         
        = 
        
          C 
          
            2 
           
         
          
        ; 
          
          
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  J 
                 
               
             
           
         
        = 
        
          
            2 
            
              D 
              
                1 
               
             
           
         
        ( 
        J 
        − 
        1 
        ) 
       
     
    {\displaystyle {\cfrac {\partial {W}}{\partial {\bar {I}}_{1}}}=C_{1}~;~~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}=C_{2}~;~~{\cfrac {\partial {W}}{\partial J}}={\frac {2}{D_{1}}}(J-1)} 
   
 Therefore, the Cauchy stress in a compressible Mooney–Rivlin material is given by
  
    
      
        
          σ 
         
        = 
        
          
            
              
                 
              
                
                  2 
                 
               
             
            
              
                 
              
                
                  J 
                 
               
             
           
         
        
          [ 
          
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          2 
                          
                            / 
                           
                          3 
                         
                       
                     
                   
                 
               
             
            
              ( 
              
                
                  C 
                  
                    1 
                   
                 
                + 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                  
                
                  C 
                  
                    2 
                   
                 
               
              ) 
             
            
              B 
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          4 
                          
                            / 
                           
                          3 
                         
                       
                     
                   
                 
               
             
              
            
              C 
              
                2 
               
             
              
            
              B 
             
            ⋅ 
            
              B 
             
           
          ] 
         
        + 
        
          [ 
          
            
              
                2 
                
                  D 
                  
                    1 
                   
                 
               
             
            ( 
            J 
            − 
            1 
            ) 
            − 
            
              
                
                  
                     
                  
                    
                      2 
                     
                   
                 
                
                  
                     
                  
                    
                      3 
                      J 
                     
                   
                 
               
             
            
              ( 
              
                
                  C 
                  
                    1 
                   
                 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                + 
                2 
                
                  C 
                  
                    2 
                   
                 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                 
                  
               
              ) 
             
           
          ] 
         
        
          I 
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}={\cfrac {2}{J}}\left[{\cfrac {1}{J^{2/3}}}\left(C_{1}+{\bar {I}}_{1}~C_{2}\right){\boldsymbol {B}}-{\cfrac {1}{J^{4/3}}}~C_{2}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}\right]+\left[{\frac {2}{D_{1}}}(J-1)-{\cfrac {2}{3J}}\left(C_{1}{\bar {I}}_{1}+2C_{2}{\bar {I}}_{2}~\right)\right]{\boldsymbol {I}}} 
   
 It can be shown, after some algebra, that the pressure  is given by
  
    
      
        p 
        := 
        − 
        
          
            
              1 
              3 
             
           
         
        
          tr 
         
        ( 
        
          σ 
         
        ) 
        = 
        − 
        
          
            
              ∂ 
              W 
             
            
              ∂ 
              J 
             
           
         
        = 
        − 
        
          
            2 
            
              D 
              
                1 
               
             
           
         
        ( 
        J 
        − 
        1 
        ) 
        . 
       
     
    {\displaystyle p:=-{\tfrac {1}{3}}\,{\text{tr}}({\boldsymbol {\sigma }})=-{\frac {\partial W}{\partial J}}=-{\frac {2}{D_{1}}}(J-1)\,.} 
   
 The stress can then be expressed in the form
  
    
      
        
          σ 
         
        = 
        − 
        p 
          
        
          I 
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  J 
                 
               
             
           
         
        
          [ 
          
            
              
                
                  
                     
                  
                    
                      2 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          2 
                          
                            / 
                           
                          3 
                         
                       
                     
                   
                 
               
             
            
              ( 
              
                
                  C 
                  
                    1 
                   
                 
                + 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                  
                
                  C 
                  
                    2 
                   
                 
               
              ) 
             
            
              B 
             
            − 
            
              
                
                  
                     
                  
                    
                      2 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          4 
                          
                            / 
                           
                          3 
                         
                       
                     
                   
                 
               
             
              
            
              C 
              
                2 
               
             
              
            
              B 
             
            ⋅ 
            
              B 
             
            − 
            
              
                
                  
                     
                  
                    
                      2 
                     
                   
                 
                
                  
                     
                  
                    
                      3 
                     
                   
                 
               
             
            
              ( 
              
                
                  C 
                  
                    1 
                   
                 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                + 
                2 
                
                  C 
                  
                    2 
                   
                 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                 
               
              ) 
             
            
              I 
             
           
          ] 
         
        . 
       
     
    {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {I}}+{\cfrac {1}{J}}\left[{\cfrac {2}{J^{2/3}}}\left(C_{1}+{\bar {I}}_{1}~C_{2}\right){\boldsymbol {B}}-{\cfrac {2}{J^{4/3}}}~C_{2}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}-{\cfrac {2}{3}}\left(C_{1}\,{\bar {I}}_{1}+2C_{2}\,{\bar {I}}_{2}\right){\boldsymbol {I}}\right]\,.} 
   
 The above equation is often written using the unimodular tensor 
  
    
      
        
          
            
              B 
              ¯ 
             
           
         
        = 
        
          J 
          
            − 
            2 
            
              / 
             
            3 
           
         
        
          B 
         
       
     
    {\displaystyle {\bar {\boldsymbol {B}}}=J^{-2/3}\,{\boldsymbol {B}}} 
   
 
  
    
      
        
          σ 
         
        = 
        − 
        p 
          
        
          I 
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  J 
                 
               
             
           
         
        
          [ 
          
            2 
            
              ( 
              
                
                  C 
                  
                    1 
                   
                 
                + 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                  
                
                  C 
                  
                    2 
                   
                 
               
              ) 
             
            
              
                
                  B 
                  ¯ 
                 
               
             
            − 
            2 
              
            
              C 
              
                2 
               
             
              
            
              
                
                  B 
                  ¯ 
                 
               
             
            ⋅ 
            
              
                
                  B 
                  ¯ 
                 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      2 
                     
                   
                 
                
                  
                     
                  
                    
                      3 
                     
                   
                 
               
             
            
              ( 
              
                
                  C 
                  
                    1 
                   
                 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    1 
                   
                 
                + 
                2 
                
                  C 
                  
                    2 
                   
                 
                
                  
                    
                      
                        I 
                        ¯ 
                       
                     
                   
                  
                    2 
                   
                 
               
              ) 
             
            
              I 
             
           
          ] 
         
        . 
       
     
    {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {I}}+{\cfrac {1}{J}}\left[2\left(C_{1}+{\bar {I}}_{1}~C_{2}\right){\bar {\boldsymbol {B}}}-2~C_{2}~{\bar {\boldsymbol {B}}}\cdot {\bar {\boldsymbol {B}}}-{\cfrac {2}{3}}\left(C_{1}\,{\bar {I}}_{1}+2C_{2}\,{\bar {I}}_{2}\right){\boldsymbol {I}}\right]\,.} 
   
 For an incompressible  Mooney–Rivlin material with 
  
    
      
        J 
        = 
        1 
       
     
    {\displaystyle J=1} 
   
 
  
    
      
        p 
        = 
        0 
       
     
    {\displaystyle p=0} 
   
 
  
    
      
        
          
            
              B 
              ¯ 
             
           
         
        = 
        
          B 
         
       
     
    {\displaystyle {\bar {\boldsymbol {B}}}={\boldsymbol {B}}} 
   
 
  
    
      
        
          σ 
         
        = 
        2 
        
          ( 
          
            
              C 
              
                1 
               
             
            + 
            
              I 
              
                1 
               
             
              
            
              C 
              
                2 
               
             
           
          ) 
         
        
          B 
         
        − 
        2 
        
          C 
          
            2 
           
         
          
        
          B 
         
        ⋅ 
        
          B 
         
        − 
        
          
            
              
                 
              
                
                  2 
                 
               
             
            
              
                 
              
                
                  3 
                 
               
             
           
         
        
          ( 
          
            
              C 
              
                1 
               
             
            
              I 
              
                1 
               
             
            + 
            2 
            
              C 
              
                2 
               
             
            
              I 
              
                2 
               
             
           
          ) 
         
        
          I 
         
        . 
       
     
    {\displaystyle {\boldsymbol {\sigma }}=2\left(C_{1}+I_{1}~C_{2}\right){\boldsymbol {B}}-2C_{2}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}-{\cfrac {2}{3}}\left(C_{1}\,I_{1}+2C_{2}\,I_{2}\right){\boldsymbol {I}}\,.} 
   
 Since 
  
    
      
        det 
        J 
        = 
        1 
       
     
    {\displaystyle \det J=1} 
   
 Cayley–Hamilton theorem  implies
  
    
      
        
          
            B 
           
          
            − 
            1 
           
         
        = 
        
          B 
         
        ⋅ 
        
          B 
         
        − 
        
          I 
          
            1 
           
         
          
        
          B 
         
        + 
        
          I 
          
            2 
           
         
          
        
          I 
         
        . 
       
     
    {\displaystyle {\boldsymbol {B}}^{-1}={\boldsymbol {B}}\cdot {\boldsymbol {B}}-I_{1}~{\boldsymbol {B}}+I_{2}~{\boldsymbol {I}}.} 
   
 Hence, the Cauchy stress can be expressed as
  
    
      
        
          σ 
         
        = 
        − 
        
          p 
          
            ∗ 
           
         
          
        
          I 
         
        + 
        2 
        
          C 
          
            1 
           
         
          
        
          B 
         
        − 
        2 
        
          C 
          
            2 
           
         
          
        
          
            B 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}=-p^{*}~{\boldsymbol {I}}+2C_{1}~{\boldsymbol {B}}-2C_{2}~{\boldsymbol {B}}^{-1}} 
   
 where 
  
    
      
        
          p 
          
            ∗ 
           
         
        := 
        
          
            
              2 
              3 
             
           
         
        ( 
        
          C 
          
            1 
           
         
          
        
          I 
          
            1 
           
         
        − 
        
          C 
          
            2 
           
         
          
        
          I 
          
            2 
           
         
        ) 
        . 
         
     
    {\displaystyle p^{*}:={\tfrac {2}{3}}(C_{1}~I_{1}-C_{2}~I_{2}).\,} 
   
 
Cauchy stress in terms of principal stretches 
In terms of the principal stretches , the Cauchy stress differences for an incompressible  hyperelastic material are given by
  
    
      
        
          σ 
          
            11 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        
          λ 
          
            1 
           
         
          
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    λ 
                    
                      1 
                     
                   
                 
               
             
           
         
        − 
        
          λ 
          
            3 
           
         
          
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    λ 
                    
                      3 
                     
                   
                 
               
             
           
         
          
        ; 
          
          
        
          σ 
          
            22 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        
          λ 
          
            2 
           
         
          
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    λ 
                    
                      2 
                     
                   
                 
               
             
           
         
        − 
        
          λ 
          
            3 
           
         
          
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    λ 
                    
                      3 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \sigma _{11}-\sigma _{33}=\lambda _{1}~{\cfrac {\partial {W}}{\partial \lambda _{1}}}-\lambda _{3}~{\cfrac {\partial {W}}{\partial \lambda _{3}}}~;~~\sigma _{22}-\sigma _{33}=\lambda _{2}~{\cfrac {\partial {W}}{\partial \lambda _{2}}}-\lambda _{3}~{\cfrac {\partial {W}}{\partial \lambda _{3}}}} 
   
 For an incompressible  Mooney-Rivlin material,
  
    
      
        W 
        = 
        
          C 
          
            1 
           
         
        ( 
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        − 
        3 
        ) 
        + 
        
          C 
          
            2 
           
         
        ( 
        
          λ 
          
            1 
           
          
            2 
           
         
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        
          λ 
          
            2 
           
          
            2 
           
         
        
          λ 
          
            3 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        
          λ 
          
            1 
           
          
            2 
           
         
        − 
        3 
        ) 
          
        ; 
          
          
        
          λ 
          
            1 
           
         
        
          λ 
          
            2 
           
         
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle W=C_{1}(\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}-3)+C_{2}(\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}-3)~;~~\lambda _{1}\lambda _{2}\lambda _{3}=1} 
   
 Therefore,
  
    
      
        
          λ 
          
            1 
           
         
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    λ 
                    
                      1 
                     
                   
                 
               
             
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        2 
        
          C 
          
            2 
           
         
        
          λ 
          
            1 
           
          
            2 
           
         
        ( 
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        ) 
          
        ; 
          
          
        
          λ 
          
            2 
           
         
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    λ 
                    
                      2 
                     
                   
                 
               
             
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        2 
        
          C 
          
            2 
           
         
        
          λ 
          
            2 
           
          
            2 
           
         
        ( 
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        ) 
          
        ; 
          
          
        
          λ 
          
            3 
           
         
        
          
            
              
                 
              
                
                  ∂ 
                  
                    W 
                   
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    λ 
                    
                      3 
                     
                   
                 
               
             
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        
          λ 
          
            3 
           
          
            2 
           
         
        + 
        2 
        
          C 
          
            2 
           
         
        
          λ 
          
            3 
           
          
            2 
           
         
        ( 
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        
          λ 
          
            2 
           
          
            2 
           
         
        ) 
       
     
    {\displaystyle \lambda _{1}{\cfrac {\partial {W}}{\partial \lambda _{1}}}=2C_{1}\lambda _{1}^{2}+2C_{2}\lambda _{1}^{2}(\lambda _{2}^{2}+\lambda _{3}^{2})~;~~\lambda _{2}{\cfrac {\partial {W}}{\partial \lambda _{2}}}=2C_{1}\lambda _{2}^{2}+2C_{2}\lambda _{2}^{2}(\lambda _{1}^{2}+\lambda _{3}^{2})~;~~\lambda _{3}{\cfrac {\partial {W}}{\partial \lambda _{3}}}=2C_{1}\lambda _{3}^{2}+2C_{2}\lambda _{3}^{2}(\lambda _{1}^{2}+\lambda _{2}^{2})} 
   
 Since 
  
    
      
        
          λ 
          
            1 
           
         
        
          λ 
          
            2 
           
         
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \lambda _{1}\lambda _{2}\lambda _{3}=1} 
   
 
  
    
      
        
          
            
              
                
                  λ 
                  
                    1 
                   
                 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            W 
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            λ 
                            
                              1 
                             
                           
                         
                       
                     
                   
                 
               
              
                = 
                2 
                
                  C 
                  
                    1 
                   
                 
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
                + 
                2 
                
                  C 
                  
                    2 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              
                                λ 
                                
                                  3 
                                 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                    + 
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              
                                λ 
                                
                                  2 
                                 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                   
                  ) 
                 
                  
                ; 
                  
                  
                
                  λ 
                  
                    2 
                   
                 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            W 
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            λ 
                            
                              2 
                             
                           
                         
                       
                     
                   
                 
                = 
                2 
                
                  C 
                  
                    1 
                   
                 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                + 
                2 
                
                  C 
                  
                    2 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              
                                λ 
                                
                                  3 
                                 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                    + 
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              
                                λ 
                                
                                  1 
                                 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                
                  λ 
                  
                    3 
                   
                 
                
                  
                    
                      
                         
                      
                        
                          ∂ 
                          
                            W 
                           
                         
                       
                     
                    
                      
                         
                      
                        
                          ∂ 
                          
                            λ 
                            
                              3 
                             
                           
                         
                       
                     
                   
                 
               
              
                = 
                2 
                
                  C 
                  
                    1 
                   
                 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
                + 
                2 
                
                  C 
                  
                    2 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              
                                λ 
                                
                                  2 
                                 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                    + 
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              
                                λ 
                                
                                  1 
                                 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lambda _{1}{\cfrac {\partial {W}}{\partial \lambda _{1}}}&=2C_{1}\lambda _{1}^{2}+2C_{2}\left({\cfrac {1}{\lambda _{3}^{2}}}+{\cfrac {1}{\lambda _{2}^{2}}}\right)~;~~\lambda _{2}{\cfrac {\partial {W}}{\partial \lambda _{2}}}=2C_{1}\lambda _{2}^{2}+2C_{2}\left({\cfrac {1}{\lambda _{3}^{2}}}+{\cfrac {1}{\lambda _{1}^{2}}}\right)\\\lambda _{3}{\cfrac {\partial {W}}{\partial \lambda _{3}}}&=2C_{1}\lambda _{3}^{2}+2C_{2}\left({\cfrac {1}{\lambda _{2}^{2}}}+{\cfrac {1}{\lambda _{1}^{2}}}\right)\end{aligned}}} 
   
 Then the expressions for the Cauchy stress differences become
  
    
      
        
          σ 
          
            11 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        ( 
        
          λ 
          
            1 
           
          
            2 
           
         
        − 
        
          λ 
          
            3 
           
          
            2 
           
         
        ) 
        − 
        2 
        
          C 
          
            2 
           
         
        
          ( 
          
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          1 
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          3 
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
          
        ; 
          
          
        
          σ 
          
            22 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        ( 
        
          λ 
          
            2 
           
          
            2 
           
         
        − 
        
          λ 
          
            3 
           
          
            2 
           
         
        ) 
        − 
        2 
        
          C 
          
            2 
           
         
        
          ( 
          
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          3 
                         
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \sigma _{11}-\sigma _{33}=2C_{1}(\lambda _{1}^{2}-\lambda _{3}^{2})-2C_{2}\left({\cfrac {1}{\lambda _{1}^{2}}}-{\cfrac {1}{\lambda _{3}^{2}}}\right)~;~~\sigma _{22}-\sigma _{33}=2C_{1}(\lambda _{2}^{2}-\lambda _{3}^{2})-2C_{2}\left({\cfrac {1}{\lambda _{2}^{2}}}-{\cfrac {1}{\lambda _{3}^{2}}}\right)} 
   
 
Uniaxial extension 
For the case of an incompressible Mooney–Rivlin material under uniaxial elongation, 
  
    
      
        
          λ 
          
            1 
           
         
        = 
        λ 
         
     
    {\displaystyle \lambda _{1}=\lambda \,} 
   
 
  
    
      
        
          λ 
          
            2 
           
         
        = 
        
          λ 
          
            3 
           
         
        = 
        1 
        
          / 
         
        
          
            λ 
           
         
       
     
    {\displaystyle \lambda _{2}=\lambda _{3}=1/{\sqrt {\lambda }}} 
   
 true stress  (Cauchy stress) differences can be calculated as:
  
    
      
        
          
            
              
                
                  σ 
                  
                    11 
                   
                 
                − 
                
                  σ 
                  
                    33 
                   
                 
               
              
                = 
                2 
                
                  C 
                  
                    1 
                   
                 
                
                  ( 
                  
                    
                      λ 
                      
                        2 
                       
                     
                    − 
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              λ 
                             
                           
                         
                       
                     
                   
                  ) 
                 
                − 
                2 
                
                  C 
                  
                    2 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          
                             
                          
                            
                              1 
                             
                           
                         
                        
                          
                             
                          
                            
                              
                                λ 
                                
                                  2 
                                 
                               
                             
                           
                         
                       
                     
                    − 
                    λ 
                   
                  ) 
                 
               
             
            
              
                
                  σ 
                  
                    22 
                   
                 
                − 
                
                  σ 
                  
                    33 
                   
                 
               
              
                = 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sigma _{11}-\sigma _{33}&=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)-2C_{2}\left({\cfrac {1}{\lambda ^{2}}}-\lambda \right)\\\sigma _{22}-\sigma _{33}&=0\end{aligned}}} 
   
 
Simple tension 
Comparison of experimental results (dots) and predictions for Hooke's law (1, blue line), neo-Hookean solid (2, red line) and Mooney–Rivlin solid models(3, green line) In the case of simple tension, 
  
    
      
        
          σ 
          
            22 
           
         
        = 
        
          σ 
          
            33 
           
         
        = 
        0 
       
     
    {\displaystyle \sigma _{22}=\sigma _{33}=0} 
   
 
  
    
      
        
          σ 
          
            11 
           
         
        = 
        
          ( 
          
            2 
            
              C 
              
                1 
               
             
            + 
            
              
                
                  
                     
                  
                    
                      2 
                      
                        C 
                        
                          2 
                         
                       
                     
                   
                 
                
                  
                     
                  
                    
                      λ 
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              λ 
              
                2 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      λ 
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \sigma _{11}=\left(2C_{1}+{\cfrac {2C_{2}}{\lambda }}\right)\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)} 
   
 In alternative notation, where the Cauchy stress is written as 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        
          T 
          
            11 
           
         
        = 
        
          ( 
          
            2 
            
              C 
              
                1 
               
             
            + 
            
              
                
                  2 
                  
                    C 
                    
                      2 
                     
                   
                 
                α 
               
             
           
          ) 
         
        
          ( 
          
            
              α 
              
                2 
               
             
            − 
            
              α 
              
                − 
                1 
               
             
           
          ) 
         
       
     
    {\displaystyle T_{11}=\left(2C_{1}+{\frac {2C_{2}}{\alpha }}\right)\left(\alpha ^{2}-\alpha ^{-1}\right)} 
   
 and the engineering stress  (force per unit reference area) for an incompressible Mooney–Rivlin material under simple tension can be calculated using
  
    
      
        
          T 
          
            11 
           
          
            
              e 
              n 
              g 
             
           
         
        = 
        
          T 
          
            11 
           
         
        
          α 
          
            2 
           
         
        
          α 
          
            3 
           
         
        = 
        
          
            
              
                 
              
                
                  
                    T 
                    
                      11 
                     
                   
                 
               
             
            
              
                 
              
                
                  α 
                 
               
             
           
         
       
     
    {\displaystyle T_{11}^{\mathrm {eng} }=T_{11}\alpha _{2}\alpha _{3}={\cfrac {T_{11}}{\alpha }}} 
   
 
  
    
      
        
          T 
          
            11 
           
          
            
              e 
              n 
              g 
             
           
         
        = 
        
          ( 
          
            2 
            
              C 
              
                1 
               
             
            + 
            
              
                
                  2 
                  
                    C 
                    
                      2 
                     
                   
                 
                α 
               
             
           
          ) 
         
        
          ( 
          
            α 
            − 
            
              α 
              
                − 
                2 
               
             
           
          ) 
         
       
     
    {\displaystyle T_{11}^{\mathrm {eng} }=\left(2C_{1}+{\frac {2C_{2}}{\alpha }}\right)\left(\alpha -\alpha ^{-2}\right)} 
   
 If we define
  
    
      
        
          T 
          
            11 
           
          
            ∗ 
           
         
        := 
        
          
            
              
                 
              
                
                  
                    T 
                    
                      11 
                     
                    
                      
                        e 
                        n 
                        g 
                       
                     
                   
                 
               
             
            
              
                 
              
                
                  α 
                  − 
                  
                    α 
                    
                      − 
                      2 
                     
                   
                 
               
             
           
         
          
        ; 
          
          
        β 
        := 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  α 
                 
               
             
           
         
       
     
    {\displaystyle T_{11}^{*}:={\cfrac {T_{11}^{\mathrm {eng} }}{\alpha -\alpha ^{-2}}}~;~~\beta :={\cfrac {1}{\alpha }}} 
   
 then
  
    
      
        
          T 
          
            11 
           
          
            ∗ 
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        + 
        2 
        
          C 
          
            2 
           
         
        β 
          
        . 
       
     
    {\displaystyle T_{11}^{*}=2C_{1}+2C_{2}\beta ~.} 
   
 The slope of the 
  
    
      
        
          T 
          
            11 
           
          
            ∗ 
           
         
       
     
    {\displaystyle T_{11}^{*}} 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        
          C 
          
            2 
           
         
       
     
    {\displaystyle C_{2}} 
   
 
  
    
      
        
          T 
          
            11 
           
          
            ∗ 
           
         
       
     
    {\displaystyle T_{11}^{*}} 
   
 
  
    
      
        
          C 
          
            1 
           
         
       
     
    {\displaystyle C_{1}} 
   
 Neo-Hookean solid  does, but requires an additional empirical constant.
Equibiaxial tension 
In the case of equibiaxial tension, the principal stretches are 
  
    
      
        
          λ 
          
            1 
           
         
        = 
        
          λ 
          
            2 
           
         
        = 
        λ 
       
     
    {\displaystyle \lambda _{1}=\lambda _{2}=\lambda } 
   
 
  
    
      
        
          λ 
          
            3 
           
         
        = 
        1 
        
          / 
         
        
          λ 
          
            2 
           
         
       
     
    {\displaystyle \lambda _{3}=1/\lambda ^{2}} 
   
 
  
    
      
        
          σ 
          
            11 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        
          σ 
          
            22 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        
          ( 
          
            
              λ 
              
                2 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          4 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        − 
        2 
        
          C 
          
            2 
           
         
        
          ( 
          
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            − 
            
              λ 
              
                4 
               
             
           
          ) 
         
       
     
    {\displaystyle \sigma _{11}-\sigma _{33}=\sigma _{22}-\sigma _{33}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{4}}}\right)-2C_{2}\left({\cfrac {1}{\lambda ^{2}}}-\lambda ^{4}\right)} 
   
 The equations for equibiaxial tension are equivalent to those governing uniaxial compression.
Pure shear 
A pure shear deformation can be achieved by applying stretches of the form [ 7] 
  
    
      
        
          λ 
          
            1 
           
         
        = 
        λ 
          
        ; 
          
          
        
          λ 
          
            2 
           
         
        = 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
          
        ; 
          
          
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1} 
   
 The Cauchy stress differences for pure shear may therefore be expressed as
  
    
      
        
          σ 
          
            11 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        ( 
        
          λ 
          
            2 
           
         
        − 
        1 
        ) 
        − 
        2 
        
          C 
          
            2 
           
         
        
          ( 
          
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            − 
            1 
           
          ) 
         
          
        ; 
          
          
        
          σ 
          
            22 
           
         
        − 
        
          σ 
          
            33 
           
         
        = 
        2 
        
          C 
          
            1 
           
         
        
          ( 
          
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            − 
            1 
           
          ) 
         
        − 
        2 
        
          C 
          
            2 
           
         
        ( 
        
          λ 
          
            2 
           
         
        − 
        1 
        ) 
       
     
    {\displaystyle \sigma _{11}-\sigma _{33}=2C_{1}(\lambda ^{2}-1)-2C_{2}\left({\cfrac {1}{\lambda ^{2}}}-1\right)~;~~\sigma _{22}-\sigma _{33}=2C_{1}\left({\cfrac {1}{\lambda ^{2}}}-1\right)-2C_{2}(\lambda ^{2}-1)} 
   
 Therefore
  
    
      
        
          σ 
          
            11 
           
         
        − 
        
          σ 
          
            22 
           
         
        = 
        2 
        ( 
        
          C 
          
            1 
           
         
        + 
        
          C 
          
            2 
           
         
        ) 
        
          ( 
          
            
              λ 
              
                2 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \sigma _{11}-\sigma _{22}=2(C_{1}+C_{2})\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{2}}}\right)} 
   
 For a pure shear deformation
  
    
      
        
          I 
          
            1 
           
         
        = 
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        = 
        
          λ 
          
            2 
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      2 
                     
                   
                 
               
             
           
         
        + 
        1 
          
        ; 
          
          
        
          I 
          
            2 
           
         
        = 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      1 
                     
                    
                      2 
                     
                   
                 
               
             
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      2 
                     
                    
                      2 
                     
                   
                 
               
             
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      3 
                     
                    
                      2 
                     
                   
                 
               
             
           
         
        = 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      2 
                     
                   
                 
               
             
           
         
        + 
        
          λ 
          
            2 
           
         
        + 
        1 
       
     
    {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {1}{\lambda ^{2}}}+1~;~~I_{2}={\cfrac {1}{\lambda _{1}^{2}}}+{\cfrac {1}{\lambda _{2}^{2}}}+{\cfrac {1}{\lambda _{3}^{2}}}={\cfrac {1}{\lambda ^{2}}}+\lambda ^{2}+1} 
   
 Therefore 
  
    
      
        
          I 
          
            1 
           
         
        = 
        
          I 
          
            2 
           
         
       
     
    {\displaystyle I_{1}=I_{2}} 
   
 
Simple shear 
The deformation gradient for a simple shear deformation has the form[ 7] 
  
    
      
        
          F 
         
        = 
        
          1 
         
        + 
        γ 
          
        
          
            e 
           
          
            1 
           
         
        ⊗ 
        
          
            e 
           
          
            2 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}={\boldsymbol {1}}+\gamma ~\mathbf {e} _{1}\otimes \mathbf {e} _{2}} 
   
 where 
  
    
      
        
          
            e 
           
          
            1 
           
         
        , 
        
          
            e 
           
          
            2 
           
         
       
     
    {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2}} 
   
 
  
    
      
        γ 
        = 
        λ 
        − 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
          
        ; 
          
          
        
          λ 
          
            1 
           
         
        = 
        λ 
          
        ; 
          
          
        
          λ 
          
            2 
           
         
        = 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
          
        ; 
          
          
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \gamma =\lambda -{\cfrac {1}{\lambda }}~;~~\lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1} 
   
 In matrix form, the deformation gradient and the left Cauchy-Green deformation tensor may then be expressed as
  
    
      
        
          F 
         
        = 
        
          
            [ 
            
              
                
                  1 
                 
                
                  γ 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  1 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  1 
                 
               
             
            ] 
           
         
          
        ; 
          
          
        
          B 
         
        = 
        
          F 
         
        ⋅ 
        
          
            F 
           
          
            T 
           
         
        = 
        
          
            [ 
            
              
                
                  1 
                  + 
                  
                    γ 
                    
                      2 
                     
                   
                 
                
                  γ 
                 
                
                  0 
                 
               
              
                
                  γ 
                 
                
                  1 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  1 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}~;~~{\boldsymbol {B}}={\boldsymbol {F}}\cdot {\boldsymbol {F}}^{T}={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}} 
   
 Therefore,
  
    
      
        
          
            B 
           
          
            − 
            1 
           
         
        = 
        
          
            [ 
            
              
                
                  1 
                 
                
                  − 
                  γ 
                 
                
                  0 
                 
               
              
                
                  − 
                  γ 
                 
                
                  1 
                  + 
                  
                    γ 
                    
                      2 
                     
                   
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  1 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle {\boldsymbol {B}}^{-1}={\begin{bmatrix}1&-\gamma &0\\-\gamma &1+\gamma ^{2}&0\\0&0&1\end{bmatrix}}} 
   
 The Cauchy stress is given by
  
    
      
        
          σ 
         
        = 
        
          
            [ 
            
              
                
                  − 
                  
                    p 
                    
                      ∗ 
                     
                   
                  + 
                  2 
                  ( 
                  
                    C 
                    
                      1 
                     
                   
                  − 
                  
                    C 
                    
                      2 
                     
                   
                  ) 
                  + 
                  2 
                  
                    C 
                    
                      1 
                     
                   
                  
                    γ 
                    
                      2 
                     
                   
                 
                
                  2 
                  ( 
                  
                    C 
                    
                      1 
                     
                   
                  + 
                  
                    C 
                    
                      2 
                     
                   
                  ) 
                  γ 
                 
                
                  0 
                 
               
              
                
                  2 
                  ( 
                  
                    C 
                    
                      1 
                     
                   
                  + 
                  
                    C 
                    
                      2 
                     
                   
                  ) 
                  γ 
                 
                
                  − 
                  
                    p 
                    
                      ∗ 
                     
                   
                  + 
                  2 
                  ( 
                  
                    C 
                    
                      1 
                     
                   
                  − 
                  
                    C 
                    
                      2 
                     
                   
                  ) 
                  − 
                  2 
                  
                    C 
                    
                      2 
                     
                   
                  
                    γ 
                    
                      2 
                     
                   
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  − 
                  
                    p 
                    
                      ∗ 
                     
                   
                  + 
                  2 
                  ( 
                  
                    C 
                    
                      1 
                     
                   
                  − 
                  
                    C 
                    
                      2 
                     
                   
                  ) 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}={\begin{bmatrix}-p^{*}+2(C_{1}-C_{2})+2C_{1}\gamma ^{2}&2(C_{1}+C_{2})\gamma &0\\2(C_{1}+C_{2})\gamma &-p^{*}+2(C_{1}-C_{2})-2C_{2}\gamma ^{2}&0\\0&0&-p^{*}+2(C_{1}-C_{2})\end{bmatrix}}} 
   
 For consistency with linear elasticity, clearly 
  
    
      
        μ 
        = 
        2 
        ( 
        
          C 
          
            1 
           
         
        + 
        
          C 
          
            2 
           
         
        ) 
       
     
    {\displaystyle \mu =2(C_{1}+C_{2})} 
   
 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 
Rubber 
Elastic response of rubber-like materials are often modeled based on the Mooney–Rivlin model.  The constants 
  
    
      
        
          C 
          
            1 
           
         
        , 
        
          C 
          
            2 
           
         
       
     
    {\displaystyle C_{1},C_{2}} 
   
 [ 8] 
Notes and references 
^ Mooney, M., 1940, A theory of large elastic deformation , Journal of Applied Physics, 11(9), pp. 582–592. 
^ Rivlin, R. S., 1948, Large elastic deformations of isotropic materials. IV. Further developments of the general theory , Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), pp. 379–397. 
^ Boulanger, P. and Hayes, M. A., 2001, "Finite amplitude waves in Mooney–Rivlin and Hadamard materials", in Topics in Finite Elasticity , ed. M. A Hayes and G. Soccomandi, International Center for Mechanical Sciences. 
^ C. W. Macosko, 1994, Rheology: principles, measurement and applications , VCH Publishers, ISBN  1-56081-579-5 . 
^ Unimodularity in this context means 
  
    
      
        det 
        
          
            
              B 
              ¯ 
             
           
         
        = 
        1 
       
     
    {\displaystyle \det {\bar {\boldsymbol {B}}}=1} 
   
  
^ Bower, Allan (2009). Applied Mechanics of Solids ISBN  978-1-4398-0247-2 . Retrieved 2018-04-19  . ^ a b   Ogden, R. W., 1984, Nonlinear elastic deformations , Dover 
^ Hamza, Muhsin; Alwan, Hassan (2010). "Hyperelastic Constitutive Modeling of Rubber and Rubber-Like Materials under Finite Strain" . Engineering and Technology Journal . 28  (13): 2560– 2575. doi :10.30684/etj.28.13.5   
See also