In continuum mechanics , the most commonly used measure of stress  is the Cauchy stress tensor , often called simply the  stress tensor or "true stress".  However, several alternative measures of stress can be defined:[ 1] [ 2] [ 3] 
The Kirchhoff stress (
  
    
      
        
          τ 
         
       
     
    {\displaystyle {\boldsymbol {\tau }}} 
   
  
The nominal stress (
  
    
      
        
          N 
         
       
     
    {\displaystyle {\boldsymbol {N}}} 
   
  
The Piola–Kirchhoff stress tensors 
The first Piola–Kirchhoff stress (
  
    
      
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {P}}} 
   
 
  
    
      
        
          P 
         
        = 
        
          
            N 
           
          
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {P}}={\boldsymbol {N}}^{T}} 
   
  
The second Piola–Kirchhoff stress or PK2 stress (
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
   
The Biot stress (
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
  
Definitions 
Consider the situation shown in the following figure. The following definitions use the notations shown in the figure.  
Quantities used in the definition of stress measures  
In the reference configuration 
  
    
      
        
          Ω 
          
            0 
           
         
       
     
    {\displaystyle \Omega _{0}} 
   
 
  
    
      
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle d\Gamma _{0}} 
   
 
  
    
      
        
          N 
         
        ≡ 
        
          
            n 
           
          
            0 
           
         
       
     
    {\displaystyle \mathbf {N} \equiv \mathbf {n} _{0}} 
   
 
  
    
      
        
          
            t 
           
          
            0 
           
         
       
     
    {\displaystyle \mathbf {t} _{0}} 
   
 
  
    
      
        d 
        
          
            f 
           
          
            0 
           
         
       
     
    {\displaystyle d\mathbf {f} _{0}} 
   
 
  
    
      
        Ω 
       
     
    {\displaystyle \Omega } 
   
 
  
    
      
        d 
        Γ 
       
     
    {\displaystyle d\Gamma } 
   
 
  
    
      
        
          n 
         
       
     
    {\displaystyle \mathbf {n} } 
   
 
  
    
      
        
          t 
         
       
     
    {\displaystyle \mathbf {t} } 
   
 
  
    
      
        d 
        
          f 
         
       
     
    {\displaystyle d\mathbf {f} } 
   
 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 deformation gradient tensor , 
  
    
      
        J 
       
     
    {\displaystyle J} 
   
 
Cauchy stress 
The Cauchy stress (or true stress) is a measure of the force acting on an element of area in the deformed configuration.  This tensor is symmetric and is defined via
  
    
      
        d 
        
          f 
         
        = 
        
          t 
         
          
        d 
        Γ 
        = 
        
          
            σ 
           
          
            T 
           
         
        ⋅ 
        
          n 
         
          
        d 
        Γ 
       
     
    {\displaystyle d\mathbf {f} =\mathbf {t} ~d\Gamma ={\boldsymbol {\sigma }}^{T}\cdot \mathbf {n} ~d\Gamma } 
   
 or
  
    
      
        
          t 
         
        = 
        
          
            σ 
           
          
            T 
           
         
        ⋅ 
        
          n 
         
       
     
    {\displaystyle \mathbf {t} ={\boldsymbol {\sigma }}^{T}\cdot \mathbf {n} } 
   
 where 
  
    
      
        
          t 
         
       
     
    {\displaystyle \mathbf {t} } 
   
 
  
    
      
        
          n 
         
       
     
    {\displaystyle \mathbf {n} } 
   
 
Kirchhoff stress 
The quantity, 
  
    
      
        
          τ 
         
        = 
        J 
          
        
          σ 
         
       
     
    {\displaystyle {\boldsymbol {\tau }}=J~{\boldsymbol {\sigma }}} 
   
 is called the Kirchhoff stress tensor , with 
  
    
      
        J 
       
     
    {\displaystyle J} 
   
 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 weighted Cauchy stress tensor  as well.
The nominal stress 
  
    
      
        
          N 
         
        = 
        
          
            P 
           
          
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {N}}={\boldsymbol {P}}^{T}} 
   
 
  
    
      
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {P}}} 
   
 
  
    
      
        d 
        
          f 
         
        = 
        
          t 
         
          
        d 
        Γ 
        = 
        
          
            N 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
        = 
        
          P 
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle d\mathbf {f} =\mathbf {t} ~d\Gamma ={\boldsymbol {N}}^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0}={\boldsymbol {P}}\cdot \mathbf {n} _{0}~d\Gamma _{0}} 
   
 or
  
    
      
        
          
            t 
           
          
            0 
           
         
        = 
        
          t 
         
        
          
            
              
                d 
                
                  Γ 
                 
               
              
                d 
                
                  Γ 
                  
                    0 
                   
                 
               
             
           
         
        = 
        
          
            N 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
        = 
        
          P 
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
       
     
    {\displaystyle \mathbf {t} _{0}=\mathbf {t} {\dfrac {d{\Gamma }}{d\Gamma _{0}}}={\boldsymbol {N}}^{T}\cdot \mathbf {n} _{0}={\boldsymbol {P}}\cdot \mathbf {n} _{0}} 
   
 This stress is unsymmetric and is a two-point tensor like the deformation gradient.[ 4] 
If we pull back  
  
    
      
        d 
        
          f 
         
       
     
    {\displaystyle d\mathbf {f} } 
   
 
  
    
      
        d 
        
          
            f 
           
          
            0 
           
         
       
     
    {\displaystyle d\mathbf {f} _{0}} 
   
 
  
    
      
        d 
        
          
            f 
           
          
            0 
           
         
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        d 
        
          f 
         
       
     
    {\displaystyle d\mathbf {f} _{0}={\boldsymbol {F}}^{-1}\cdot d\mathbf {f} } 
   
 or, 
  
    
      
        d 
        
          
            f 
           
          
            0 
           
         
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          
            N 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          
            t 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle d\mathbf {f} _{0}={\boldsymbol {F}}^{-1}\cdot {\boldsymbol {N}}^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0}={\boldsymbol {F}}^{-1}\cdot \mathbf {t} _{0}~d\Gamma _{0}} 
   
 The PK2 stress (
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        d 
        
          
            f 
           
          
            0 
           
         
        = 
        
          
            S 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          
            t 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle d\mathbf {f} _{0}={\boldsymbol {S}}^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0}={\boldsymbol {F}}^{-1}\cdot \mathbf {t} _{0}~d\Gamma _{0}} 
   
 Therefore,
  
    
      
        
          
            S 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          
            t 
           
          
            0 
           
         
       
     
    {\displaystyle {\boldsymbol {S}}^{T}\cdot \mathbf {n} _{0}={\boldsymbol {F}}^{-1}\cdot \mathbf {t} _{0}} 
   
 
Biot stress 
The Biot stress is useful because it is energy conjugate to the right stretch tensor  
  
    
      
        
          U 
         
       
     
    {\displaystyle {\boldsymbol {U}}} 
   
 
  
    
      
        
          
            P 
           
          
            T 
           
         
        ⋅ 
        
          R 
         
       
     
    {\displaystyle {\boldsymbol {P}}^{T}\cdot {\boldsymbol {R}}} 
   
 
  
    
      
        
          R 
         
       
     
    {\displaystyle {\boldsymbol {R}}} 
   
 polar decomposition  of the deformation gradient.  Therefore, the Biot stress tensor is defined as
  
    
      
        
          T 
         
        = 
        
          
            
              1 
              2 
             
           
         
        ( 
        
          
            R 
           
          
            T 
           
         
        ⋅ 
        
          P 
         
        + 
        
          
            P 
           
          
            T 
           
         
        ⋅ 
        
          R 
         
        ) 
          
        . 
       
     
    {\displaystyle {\boldsymbol {T}}={\tfrac {1}{2}}({\boldsymbol {R}}^{T}\cdot {\boldsymbol {P}}+{\boldsymbol {P}}^{T}\cdot {\boldsymbol {R}})~.} 
   
 The Biot stress is also called the Jaumann stress.
The quantity 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
  
    
      
        
          
            R 
           
          
            T 
           
         
          
        d 
        
          f 
         
        = 
        ( 
        
          
            P 
           
          
            T 
           
         
        ⋅ 
        
          R 
         
        
          ) 
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle {\boldsymbol {R}}^{T}~d\mathbf {f} =({\boldsymbol {P}}^{T}\cdot {\boldsymbol {R}})^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0}} 
   
 
Relations 
Relations between Cauchy stress and nominal stress 
From Nanson's formula  relating areas in the reference and deformed configurations:
  
    
      
        
          n 
         
          
        d 
        Γ 
        = 
        J 
          
        
          
            F 
           
          
            − 
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle \mathbf {n} ~d\Gamma =J~{\boldsymbol {F}}^{-T}\cdot \mathbf {n} _{0}~d\Gamma _{0}} 
   
 Now, 
  
    
      
        
          
            σ 
           
          
            T 
           
         
        ⋅ 
        
          n 
         
          
        d 
        Γ 
        = 
        d 
        
          f 
         
        = 
        
          
            N 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}^{T}\cdot \mathbf {n} ~d\Gamma =d\mathbf {f} ={\boldsymbol {N}}^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0}} 
   
 Hence,
  
    
      
        
          
            σ 
           
          
            T 
           
         
        ⋅ 
        ( 
        J 
          
        
          
            F 
           
          
            − 
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
        ) 
        = 
        
          
            N 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}^{T}\cdot (J~{\boldsymbol {F}}^{-T}\cdot \mathbf {n} _{0}~d\Gamma _{0})={\boldsymbol {N}}^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0}} 
   
 or,
  
    
      
        
          
            N 
           
          
            T 
           
         
        = 
        J 
          
        ( 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          σ 
         
        
          ) 
          
            T 
           
         
        = 
        J 
          
        
          
            σ 
           
          
            T 
           
         
        ⋅ 
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {N}}^{T}=J~({\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }})^{T}=J~{\boldsymbol {\sigma }}^{T}\cdot {\boldsymbol {F}}^{-T}} 
   
 or,
  
    
      
        
          N 
         
        = 
        J 
          
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          σ 
         
        
          and 
         
        
          
            N 
           
          
            T 
           
         
        = 
        
          P 
         
        = 
        J 
          
        
          
            σ 
           
          
            T 
           
         
        ⋅ 
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {N}}=J~{\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }}\qquad {\text{and}}\qquad {\boldsymbol {N}}^{T}={\boldsymbol {P}}=J~{\boldsymbol {\sigma }}^{T}\cdot {\boldsymbol {F}}^{-T}} 
   
 In index notation,
  
    
      
        
          N 
          
            I 
            j 
           
         
        = 
        J 
          
        
          F 
          
            I 
            k 
           
          
            − 
            1 
           
         
          
        
          σ 
          
            k 
            j 
           
         
        
          and 
         
        
          P 
          
            i 
            J 
           
         
        = 
        J 
          
        
          σ 
          
            k 
            i 
           
         
          
        
          F 
          
            J 
            k 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle N_{Ij}=J~F_{Ik}^{-1}~\sigma _{kj}\qquad {\text{and}}\qquad P_{iJ}=J~\sigma _{ki}~F_{Jk}^{-1}} 
   
 Therefore,
  
    
      
        J 
          
        
          σ 
         
        = 
        
          F 
         
        ⋅ 
        
          N 
         
        = 
        
          F 
         
        ⋅ 
        
          
            P 
           
          
            T 
           
         
          
        . 
       
     
    {\displaystyle J~{\boldsymbol {\sigma }}={\boldsymbol {F}}\cdot {\boldsymbol {N}}={\boldsymbol {F}}\cdot {\boldsymbol {P}}^{T}~.} 
   
 Note that 
  
    
      
        
          N 
         
       
     
    {\displaystyle {\boldsymbol {N}}} 
   
 
  
    
      
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {P}}} 
   
 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 
Recall that
  
    
      
        
          
            N 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
        = 
        d 
        
          f 
         
       
     
    {\displaystyle {\boldsymbol {N}}^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0}=d\mathbf {f} } 
   
 and
  
    
      
        d 
        
          f 
         
        = 
        
          F 
         
        ⋅ 
        d 
        
          
            f 
           
          
            0 
           
         
        = 
        
          F 
         
        ⋅ 
        ( 
        
          
            S 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
          
        d 
        
          Γ 
          
            0 
           
         
        ) 
       
     
    {\displaystyle d\mathbf {f} ={\boldsymbol {F}}\cdot d\mathbf {f} _{0}={\boldsymbol {F}}\cdot ({\boldsymbol {S}}^{T}\cdot \mathbf {n} _{0}~d\Gamma _{0})} 
   
 Therefore,
  
    
      
        
          
            N 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
        = 
        
          F 
         
        ⋅ 
        
          
            S 
           
          
            T 
           
         
        ⋅ 
        
          
            n 
           
          
            0 
           
         
       
     
    {\displaystyle {\boldsymbol {N}}^{T}\cdot \mathbf {n} _{0}={\boldsymbol {F}}\cdot {\boldsymbol {S}}^{T}\cdot \mathbf {n} _{0}} 
   
 or (using the symmetry of 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          N 
         
        = 
        
          S 
         
        ⋅ 
        
          
            F 
           
          
            T 
           
         
        
          and 
         
        
          P 
         
        = 
        
          F 
         
        ⋅ 
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {N}}={\boldsymbol {S}}\cdot {\boldsymbol {F}}^{T}\qquad {\text{and}}\qquad {\boldsymbol {P}}={\boldsymbol {F}}\cdot {\boldsymbol {S}}} 
   
 In index notation,
  
    
      
        
          N 
          
            I 
            j 
           
         
        = 
        
          S 
          
            I 
            K 
           
         
          
        
          F 
          
            j 
            K 
           
          
            T 
           
         
        
          and 
         
        
          P 
          
            i 
            J 
           
         
        = 
        
          F 
          
            i 
            K 
           
         
          
        
          S 
          
            K 
            J 
           
         
       
     
    {\displaystyle N_{Ij}=S_{IK}~F_{jK}^{T}\qquad {\text{and}}\qquad P_{iJ}=F_{iK}~S_{KJ}} 
   
 Alternatively, we can write
  
    
      
        
          S 
         
        = 
        
          N 
         
        ⋅ 
        
          
            F 
           
          
            − 
            T 
           
         
        
          and 
         
        
          S 
         
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {S}}={\boldsymbol {N}}\cdot {\boldsymbol {F}}^{-T}\qquad {\text{and}}\qquad {\boldsymbol {S}}={\boldsymbol {F}}^{-1}\cdot {\boldsymbol {P}}} 
   
 
Recall that
  
    
      
        
          N 
         
        = 
        J 
          
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          σ 
         
       
     
    {\displaystyle {\boldsymbol {N}}=J~{\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }}} 
   
 In terms of the 2nd PK stress, we have
  
    
      
        
          S 
         
        ⋅ 
        
          
            F 
           
          
            T 
           
         
        = 
        J 
          
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          σ 
         
       
     
    {\displaystyle {\boldsymbol {S}}\cdot {\boldsymbol {F}}^{T}=J~{\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }}} 
   
 Therefore,
  
    
      
        
          S 
         
        = 
        J 
          
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          σ 
         
        ⋅ 
        
          
            F 
           
          
            − 
            T 
           
         
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          τ 
         
        ⋅ 
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {S}}=J~{\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\sigma }}\cdot {\boldsymbol {F}}^{-T}={\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\tau }}\cdot {\boldsymbol {F}}^{-T}} 
   
 In index notation,
  
    
      
        
          S 
          
            I 
            J 
           
         
        = 
        
          F 
          
            I 
            k 
           
          
            − 
            1 
           
         
          
        
          τ 
          
            k 
            l 
           
         
          
        
          F 
          
            J 
            l 
           
          
            − 
            1 
           
         
       
     
    {\displaystyle S_{IJ}=F_{Ik}^{-1}~\tau _{kl}~F_{Jl}^{-1}} 
   
 Since the Cauchy stress (and hence the Kirchhoff stress) is symmetric, the 2nd PK stress is also symmetric.
Alternatively, we can write
  
    
      
        
          σ 
         
        = 
        
          J 
          
            − 
            1 
           
         
          
        
          F 
         
        ⋅ 
        
          S 
         
        ⋅ 
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}=J^{-1}~{\boldsymbol {F}}\cdot {\boldsymbol {S}}\cdot {\boldsymbol {F}}^{T}} 
   
 or, 
  
    
      
        
          τ 
         
        = 
        
          F 
         
        ⋅ 
        
          S 
         
        ⋅ 
        
          
            F 
           
          
            T 
           
         
          
        . 
       
     
    {\displaystyle {\boldsymbol {\tau }}={\boldsymbol {F}}\cdot {\boldsymbol {S}}\cdot {\boldsymbol {F}}^{T}~.} 
   
 Clearly, from definition of the push-forward  and pull-back  operations, we have
  
    
      
        
          S 
         
        = 
        
          φ 
          
            ∗ 
           
         
        [ 
        
          τ 
         
        ] 
        = 
        
          
            F 
           
          
            − 
            1 
           
         
        ⋅ 
        
          τ 
         
        ⋅ 
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {S}}=\varphi ^{*}[{\boldsymbol {\tau }}]={\boldsymbol {F}}^{-1}\cdot {\boldsymbol {\tau }}\cdot {\boldsymbol {F}}^{-T}} 
   
 and 
  
    
      
        
          τ 
         
        = 
        
          φ 
          
            ∗ 
           
         
        [ 
        
          S 
         
        ] 
        = 
        
          F 
         
        ⋅ 
        
          S 
         
        ⋅ 
        
          
            F 
           
          
            T 
           
         
          
        . 
       
     
    {\displaystyle {\boldsymbol {\tau }}=\varphi _{*}[{\boldsymbol {S}}]={\boldsymbol {F}}\cdot {\boldsymbol {S}}\cdot {\boldsymbol {F}}^{T}~.} 
   
 Therefore, 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          τ 
         
       
     
    {\displaystyle {\boldsymbol {\tau }}} 
   
 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 
  
    
      
        
          τ 
         
       
     
    {\displaystyle {\boldsymbol {\tau }}} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
Key: 
  
    
      
        J 
        = 
        det 
        
          ( 
          
            F 
           
          ) 
         
        , 
        
          C 
         
        = 
        
          
            F 
           
          
            T 
           
         
        
          F 
         
        = 
        
          
            U 
           
          
            2 
           
         
        , 
        
          F 
         
        = 
        
          R 
         
        
          U 
         
        , 
        
          
            R 
           
          
            T 
           
         
        = 
        
          
            R 
           
          
            − 
            1 
           
         
        , 
       
     
    {\displaystyle J=\det \left({\boldsymbol {F}}\right),\quad {\boldsymbol {C}}={\boldsymbol {F}}^{T}{\boldsymbol {F}}={\boldsymbol {U}}^{2},\quad {\boldsymbol {F}}={\boldsymbol {R}}{\boldsymbol {U}},\quad {\boldsymbol {R}}^{T}={\boldsymbol {R}}^{-1},} 
   
 
  
    
      
        
          P 
         
        = 
        J 
        
          σ 
         
        
          
            F 
           
          
            − 
            T 
           
         
        , 
        
          τ 
         
        = 
        J 
        
          σ 
         
        , 
        
          S 
         
        = 
        J 
        
          
            F 
           
          
            − 
            1 
           
         
        
          σ 
         
        
          
            F 
           
          
            − 
            T 
           
         
        , 
        
          T 
         
        = 
        
          
            R 
           
          
            T 
           
         
        
          P 
         
        , 
        
          M 
         
        = 
        
          C 
         
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {P}}=J{\boldsymbol {\sigma }}{\boldsymbol {F}}^{-T},\quad {\boldsymbol {\tau }}=J{\boldsymbol {\sigma }},\quad {\boldsymbol {S}}=J{\boldsymbol {F}}^{-1}{\boldsymbol {\sigma }}{\boldsymbol {F}}^{-T},\quad {\boldsymbol {T}}={\boldsymbol {R}}^{T}{\boldsymbol {P}},\quad {\boldsymbol {M}}={\boldsymbol {C}}{\boldsymbol {S}}} 
   
 
Conversion formulae
 
Equation for
 
  
    
      
        
          σ 
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}} 
   
 
  
    
      
        
          τ 
         
       
     
    {\displaystyle {\boldsymbol {\tau }}} 
   
 
  
    
      
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {P}}} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
  
    
      
        
          M 
         
       
     
    {\displaystyle {\boldsymbol {M}}} 
   
  
  
    
      
        
          σ 
         
        = 
         
     
    {\displaystyle {\boldsymbol {\sigma }}=\,} 
   
 
  
    
      
        
          σ 
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}} 
   
 
  
    
      
        
          J 
          
            − 
            1 
           
         
        
          τ 
         
       
     
    {\displaystyle J^{-1}{\boldsymbol {\tau }}} 
   
 
  
    
      
        
          J 
          
            − 
            1 
           
         
        
          P 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle J^{-1}{\boldsymbol {P}}{\boldsymbol {F}}^{T}} 
   
 
  
    
      
        
          J 
          
            − 
            1 
           
         
        
          F 
         
        
          S 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle J^{-1}{\boldsymbol {F}}{\boldsymbol {S}}{\boldsymbol {F}}^{T}} 
   
 
  
    
      
        
          J 
          
            − 
            1 
           
         
        
          R 
         
        
          T 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle J^{-1}{\boldsymbol {R}}{\boldsymbol {T}}{\boldsymbol {F}}^{T}} 
   
 
  
    
      
        
          J 
          
            − 
            1 
           
         
        
          
            F 
           
          
            − 
            T 
           
         
        
          M 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle J^{-1}{\boldsymbol {F}}^{-T}{\boldsymbol {M}}{\boldsymbol {F}}^{T}} 
   
  
  
    
      
        
          τ 
         
        = 
         
     
    {\displaystyle {\boldsymbol {\tau }}=\,} 
   
 
  
    
      
        J 
        
          σ 
         
       
     
    {\displaystyle J{\boldsymbol {\sigma }}} 
   
 
  
    
      
        
          τ 
         
       
     
    {\displaystyle {\boldsymbol {\tau }}} 
   
 
  
    
      
        
          P 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {P}}{\boldsymbol {F}}^{T}} 
   
 
  
    
      
        
          F 
         
        
          S 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}{\boldsymbol {S}}{\boldsymbol {F}}^{T}} 
   
 
  
    
      
        
          R 
         
        
          T 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {R}}{\boldsymbol {T}}{\boldsymbol {F}}^{T}} 
   
 
  
    
      
        
          
            F 
           
          
            − 
            T 
           
         
        
          M 
         
        
          
            F 
           
          
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}^{-T}{\boldsymbol {M}}{\boldsymbol {F}}^{T}} 
   
  
  
    
      
        
          P 
         
        = 
         
     
    {\displaystyle {\boldsymbol {P}}=\,} 
   
 
  
    
      
        J 
        
          σ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle J{\boldsymbol {\sigma }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          τ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {\tau }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {P}}} 
   
 
  
    
      
        
          F 
         
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {F}}{\boldsymbol {S}}} 
   
 
  
    
      
        
          R 
         
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {R}}{\boldsymbol {T}}} 
   
 
  
    
      
        
          
            F 
           
          
            − 
            T 
           
         
        
          M 
         
       
     
    {\displaystyle {\boldsymbol {F}}^{-T}{\boldsymbol {M}}} 
   
  
  
    
      
        
          S 
         
        = 
         
     
    {\displaystyle {\boldsymbol {S}}=\,} 
   
 
  
    
      
        J 
        
          
            F 
           
          
            − 
            1 
           
         
        
          σ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle J{\boldsymbol {F}}^{-1}{\boldsymbol {\sigma }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          
            F 
           
          
            − 
            1 
           
         
        
          τ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}^{-1}{\boldsymbol {\tau }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          
            F 
           
          
            − 
            1 
           
         
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {F}}^{-1}{\boldsymbol {P}}} 
   
 
  
    
      
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {S}}} 
   
 
  
    
      
        
          
            U 
           
          
            − 
            1 
           
         
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {U}}^{-1}{\boldsymbol {T}}} 
   
 
  
    
      
        
          
            C 
           
          
            − 
            1 
           
         
        
          M 
         
       
     
    {\displaystyle {\boldsymbol {C}}^{-1}{\boldsymbol {M}}} 
   
  
  
    
      
        
          T 
         
        = 
         
     
    {\displaystyle {\boldsymbol {T}}=\,} 
   
 
  
    
      
        J 
        
          
            R 
           
          
            T 
           
         
        
          σ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle J{\boldsymbol {R}}^{T}{\boldsymbol {\sigma }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          
            R 
           
          
            T 
           
         
        
          τ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {R}}^{T}{\boldsymbol {\tau }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          
            R 
           
          
            T 
           
         
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {R}}^{T}{\boldsymbol {P}}} 
   
 
  
    
      
        
          U 
         
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {U}}{\boldsymbol {S}}} 
   
 
  
    
      
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {T}}} 
   
 
  
    
      
        
          
            U 
           
          
            − 
            1 
           
         
        
          M 
         
       
     
    {\displaystyle {\boldsymbol {U}}^{-1}{\boldsymbol {M}}} 
   
  
  
    
      
        
          M 
         
        = 
         
     
    {\displaystyle {\boldsymbol {M}}=\,} 
   
 
  
    
      
        J 
        
          
            F 
           
          
            T 
           
         
        
          σ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle J{\boldsymbol {F}}^{T}{\boldsymbol {\sigma }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          
            F 
           
          
            T 
           
         
        
          τ 
         
        
          
            F 
           
          
            − 
            T 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}^{T}{\boldsymbol {\tau }}{\boldsymbol {F}}^{-T}} 
   
 
  
    
      
        
          
            F 
           
          
            T 
           
         
        
          P 
         
       
     
    {\displaystyle {\boldsymbol {F}}^{T}{\boldsymbol {P}}} 
   
 
  
    
      
        
          C 
         
        
          S 
         
       
     
    {\displaystyle {\boldsymbol {C}}{\boldsymbol {S}}} 
   
 
  
    
      
        
          U 
         
        
          T 
         
       
     
    {\displaystyle {\boldsymbol {U}}{\boldsymbol {T}}} 
   
 
  
    
      
        
          M 
         
       
     
    {\displaystyle {\boldsymbol {M}}} 
   
  
See also 
References 
^ J. Bonet and R. W. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis , Cambridge University Press. 
^ R. W. Ogden, 1984, Non-linear Elastic Deformations , Dover. 
^ L. D. Landau, E. M. Lifshitz, Theory of Elasticity , third edition 
^ Three-Dimensional Elasticity ISBN  978-0-08-087541-5 .