Plot of the Jacobi polynomial function 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}} 
   
 
  
    
      
        n 
        = 
        10 
       
     
    {\displaystyle n=10} 
   
 
  
    
      
        α 
        = 
        2 
       
     
    {\displaystyle \alpha =2} 
   
 
  
    
      
        β 
        = 
        2 
       
     
    {\displaystyle \beta =2} 
   
 
  
    
      
        − 
        2 
        − 
        2 
        i 
       
     
    {\displaystyle -2-2i} 
   
 
  
    
      
        2 
        + 
        2 
        i 
       
     
    {\displaystyle 2+2i} 
   
  In mathematics , Jacobi polynomials  (occasionally called hypergeometric polynomials ) 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(x)} 
   
 classical  orthogonal polynomials . They are orthogonal with respect to the weight
  
    
      
        ( 
        1 
        − 
        x 
        
          ) 
          
            α 
           
         
        ( 
        1 
        + 
        x 
        
          ) 
          
            β 
           
         
       
     
    {\displaystyle (1-x)^{\alpha }(1+x)^{\beta }} 
   
 
  
    
      
        [ 
        − 
        1 
        , 
        1 
        ] 
       
     
    {\displaystyle [-1,1]} 
   
 Gegenbauer polynomials , and thus also the Legendre , Zernike  and Chebyshev polynomials , are special cases of the Jacobi polynomials.[ 1] 
The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi .
Definitions 
Via the hypergeometric function 
The Jacobi polynomials are defined via the hypergeometric function  as follows:[ 2] [ 1] : IV.1  
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              ( 
              α 
              + 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              n 
              ! 
             
           
         
        
          
           
          
            2 
           
         
        
          F 
          
            1 
           
         
        
          ( 
          
            − 
            n 
            , 
            1 
            + 
            α 
            + 
            β 
            + 
            n 
            ; 
            α 
            + 
            1 
            ; 
            
              
                
                  1 
                  2 
                 
               
             
            ( 
            1 
            − 
            z 
            ) 
           
          ) 
         
        , 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {(\alpha +1)_{n}}{n!}}\,{}_{2}F_{1}\left(-n,1+\alpha +\beta +n;\alpha +1;{\tfrac {1}{2}}(1-z)\right),} 
   
 where 
  
    
      
        ( 
        α 
        + 
        1 
        
          ) 
          
            n 
           
         
       
     
    {\displaystyle (\alpha +1)_{n}} 
   
 Pochhammer's symbol  (for the rising factorial). In this case, the series for the hypergeometric function is finite, therefore one obtains the following equivalent expression:
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              Γ 
              ( 
              α 
              + 
              n 
              + 
              1 
              ) 
             
            
              n 
              ! 
              Γ 
              ( 
              α 
              + 
              β 
              + 
              n 
              + 
              1 
              ) 
             
           
         
        
          ∑ 
          
            m 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              n 
              m 
             
            
              ) 
             
           
         
        
          
            
              Γ 
              ( 
              α 
              + 
              β 
              + 
              n 
              + 
              m 
              + 
              1 
              ) 
             
            
              Γ 
              ( 
              α 
              + 
              m 
              + 
              1 
              ) 
             
           
         
        
          
            ( 
            
              
                
                  z 
                  − 
                  1 
                 
                2 
               
             
            ) 
           
          
            m 
           
         
        . 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +n+1)}{n!\,\Gamma (\alpha +\beta +n+1)}}\sum _{m=0}^{n}{n \choose m}{\frac {\Gamma (\alpha +\beta +n+m+1)}{\Gamma (\alpha +m+1)}}\left({\frac {z-1}{2}}\right)^{m}.} 
   
 
An equivalent definition is given by Rodrigues' formula :[ 1] : IV.3  [ 3] 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              
                2 
                
                  n 
                 
               
              n 
              ! 
             
           
         
        ( 
        1 
        − 
        z 
        
          ) 
          
            − 
            α 
           
         
        ( 
        1 
        + 
        z 
        
          ) 
          
            − 
            β 
           
         
        
          
            
              d 
              
                n 
               
             
            
              d 
              
                z 
                
                  n 
                 
               
             
           
         
        
          { 
          
            ( 
            1 
            − 
            z 
            
              ) 
              
                α 
               
             
            ( 
            1 
            + 
            z 
            
              ) 
              
                β 
               
             
            
              
                ( 
                
                  1 
                  − 
                  
                    z 
                    
                      2 
                     
                   
                 
                ) 
               
              
                n 
               
             
           
          } 
         
        . 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {(-1)^{n}}{2^{n}n!}}(1-z)^{-\alpha }(1+z)^{-\beta }{\frac {d^{n}}{dz^{n}}}\left\{(1-z)^{\alpha }(1+z)^{\beta }\left(1-z^{2}\right)^{n}\right\}.} 
   
 If 
  
    
      
        α 
        = 
        β 
        = 
        0 
       
     
    {\displaystyle \alpha =\beta =0} 
   
 Legendre polynomials : 
  
    
      
        
          P 
          
            n 
           
         
        ( 
        z 
        ) 
        = 
        
          
            1 
            
              
                2 
                
                  n 
                 
               
              n 
              ! 
             
           
         
        
          
            
              d 
              
                n 
               
             
            
              d 
              
                z 
                
                  n 
                 
               
             
           
         
        ( 
        
          z 
          
            2 
           
         
        − 
        1 
        
          ) 
          
            n 
           
         
        . 
       
     
    {\displaystyle P_{n}(z)={\frac {1}{2^{n}n!}}{\frac {d^{n}}{dz^{n}}}(z^{2}-1)^{n}\;.} 
   
 
Differential equation 
The Jacobi polynomials 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}} 
   
 Sturm–Liouville problem [ 1] : IV.2  
  
    
      
        
          ( 
          
            1 
            − 
            
              x 
              
                2 
               
             
           
          ) 
         
        
          y 
          ″ 
         
        + 
        ( 
        β 
        − 
        α 
        − 
        ( 
        α 
        + 
        β 
        + 
        2 
        ) 
        x 
        ) 
        
          y 
          ′ 
         
        = 
        λ 
        y 
       
     
    {\displaystyle \left(1-x^{2}\right)y''+(\beta -\alpha -(\alpha +\beta +2)x)y'=\lambda y} 
   
 where 
  
    
      
        λ 
        = 
        − 
        n 
        ( 
        n 
        + 
        α 
        + 
        β 
        + 
        1 
        ) 
       
     
    {\displaystyle \lambda =-n(n+\alpha +\beta +1)} 
   
 Bochner's theorem  states that the Jacobi polynomials are uniquely characterized as polynomial solutions to Sturm–Liouville problems with polynomial coefficients.
Alternate expression for real argument 
For real 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            s 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              
                n 
                + 
                α 
               
              
                n 
                − 
                s 
               
             
            
              ) 
             
           
         
        
          
            
              ( 
             
            
              
                n 
                + 
                β 
               
              s 
             
            
              ) 
             
           
         
        
          
            ( 
            
              
                
                  x 
                  − 
                  1 
                 
                2 
               
             
            ) 
           
          
            s 
           
         
        
          
            ( 
            
              
                
                  x 
                  + 
                  1 
                 
                2 
               
             
            ) 
           
          
            n 
            − 
            s 
           
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(x)=\sum _{s=0}^{n}{n+\alpha  \choose n-s}{n+\beta  \choose s}\left({\frac {x-1}{2}}\right)^{s}\left({\frac {x+1}{2}}\right)^{n-s}} 
   
 and for integer 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        
          
            
              ( 
             
            
              z 
              n 
             
            
              ) 
             
           
         
        = 
        
          
            { 
            
              
                
                  
                    
                      
                        Γ 
                        ( 
                        z 
                        + 
                        1 
                        ) 
                       
                      
                        Γ 
                        ( 
                        n 
                        + 
                        1 
                        ) 
                        Γ 
                        ( 
                        z 
                        − 
                        n 
                        + 
                        1 
                        ) 
                       
                     
                   
                 
                
                  n 
                  ≥ 
                  0 
                 
               
              
                
                  0 
                 
                
                  n 
                  < 
                  0 
                 
               
             
             
         
       
     
    {\displaystyle {z \choose n}={\begin{cases}{\frac {\Gamma (z+1)}{\Gamma (n+1)\Gamma (z-n+1)}}&n\geq 0\\0&n<0\end{cases}}} 
   
 where 
  
    
      
        Γ 
        ( 
        z 
        ) 
       
     
    {\displaystyle \Gamma (z)} 
   
 gamma function .
In the special case that the four quantities 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        n 
        + 
        α 
       
     
    {\displaystyle n+\alpha } 
   
 
  
    
      
        n 
        + 
        β 
       
     
    {\displaystyle n+\beta } 
   
 
  
    
      
        n 
        + 
        α 
        + 
        β 
       
     
    {\displaystyle n+\alpha +\beta } 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        ) 
        = 
        ( 
        n 
        + 
        α 
        ) 
        ! 
        ( 
        n 
        + 
        β 
        ) 
        ! 
        
          ∑ 
          
            s 
            = 
            0 
           
          
            n 
           
         
        
          
            1 
            
              s 
              ! 
              ( 
              n 
              + 
              α 
              − 
              s 
              ) 
              ! 
              ( 
              β 
              + 
              s 
              ) 
              ! 
              ( 
              n 
              − 
              s 
              ) 
              ! 
             
           
         
        
          
            ( 
            
              
                
                  x 
                  − 
                  1 
                 
                2 
               
             
            ) 
           
          
            n 
            − 
            s 
           
         
        
          
            ( 
            
              
                
                  x 
                  + 
                  1 
                 
                2 
               
             
            ) 
           
          
            s 
           
         
        . 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(x)=(n+\alpha )!(n+\beta )!\sum _{s=0}^{n}{\frac {1}{s!(n+\alpha -s)!(\beta +s)!(n-s)!}}\left({\frac {x-1}{2}}\right)^{n-s}\left({\frac {x+1}{2}}\right)^{s}.} 
   
 1 
The sum extends over all integer values of 
  
    
      
        s 
       
     
    {\displaystyle s} 
   
 
Special cases 
  
    
      
        
          P 
          
            0 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        1 
        , 
       
     
    {\displaystyle P_{0}^{(\alpha ,\beta )}(z)=1,} 
   
 
  
    
      
        
          P 
          
            1 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        ( 
        α 
        + 
        1 
        ) 
        + 
        ( 
        α 
        + 
        β 
        + 
        2 
        ) 
        
          
            
              z 
              − 
              1 
             
            2 
           
         
        , 
       
     
    {\displaystyle P_{1}^{(\alpha ,\beta )}(z)=(\alpha +1)+(\alpha +\beta +2){\frac {z-1}{2}},} 
   
 
  
    
      
        
          P 
          
            2 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              ( 
              α 
              + 
              1 
              ) 
              ( 
              α 
              + 
              2 
              ) 
             
            2 
           
         
        + 
        ( 
        α 
        + 
        2 
        ) 
        ( 
        α 
        + 
        β 
        + 
        3 
        ) 
        
          
            
              z 
              − 
              1 
             
            2 
           
         
        + 
        
          
            
              ( 
              α 
              + 
              β 
              + 
              3 
              ) 
              ( 
              α 
              + 
              β 
              + 
              4 
              ) 
             
            2 
           
         
        
          
            ( 
            
              
                
                  z 
                  − 
                  1 
                 
                2 
               
             
            ) 
           
          
            2 
           
         
        . 
       
     
    {\displaystyle P_{2}^{(\alpha ,\beta )}(z)={\frac {(\alpha +1)(\alpha +2)}{2}}+(\alpha +2)(\alpha +\beta +3){\frac {z-1}{2}}+{\frac {(\alpha +\beta +3)(\alpha +\beta +4)}{2}}\left({\frac {z-1}{2}}\right)^{2}.} 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              Γ 
              ( 
              1 
              + 
              2 
              n 
              + 
              α 
              + 
              β 
              ) 
             
            
              Γ 
              ( 
              1 
              + 
              n 
              ) 
              Γ 
              ( 
              1 
              + 
              n 
              + 
              α 
              + 
              β 
              ) 
             
           
         
        
          
            ( 
            
              
                z 
                2 
               
             
            ) 
           
          
            n 
           
         
        + 
        
           lower-degree terms  
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (1+2n+\alpha +\beta )}{\Gamma (1+n)\Gamma (1+n+\alpha +\beta )}}\left({\frac {z}{2}}\right)^{n}+{\text{ lower-degree terms }}} 
   
 
  
    
      
        
          
            
              Γ 
              ( 
              1 
              + 
              2 
              n 
              + 
              α 
              + 
              β 
              ) 
             
            
              
                2 
                
                  n 
                 
               
              n 
              ! 
              Γ 
              ( 
              1 
              + 
              n 
              + 
              α 
              + 
              β 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {\Gamma (1+2n+\alpha +\beta )}{2^{n}n!\Gamma (1+n+\alpha +\beta )}}} 
   
 
Basic properties 
Orthogonality 
The Jacobi polynomials satisfy the orthogonality condition
  
    
      
        
          ∫ 
          
            − 
            1 
           
          
            1 
           
         
        ( 
        1 
        − 
        x 
        
          ) 
          
            α 
           
         
        ( 
        1 
        + 
        x 
        
          ) 
          
            β 
           
         
        
          P 
          
            m 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        ) 
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          
            
              2 
              
                α 
                + 
                β 
                + 
                1 
               
             
            
              2 
              n 
              + 
              α 
              + 
              β 
              + 
              1 
             
           
         
        
          
            
              Γ 
              ( 
              n 
              + 
              α 
              + 
              1 
              ) 
              Γ 
              ( 
              n 
              + 
              β 
              + 
              1 
              ) 
             
            
              Γ 
              ( 
              n 
              + 
              α 
              + 
              β 
              + 
              1 
              ) 
              n 
              ! 
             
           
         
        
          δ 
          
            n 
            m 
           
         
        , 
        α 
        , 
          
        β 
        > 
        − 
        1. 
       
     
    {\displaystyle \int _{-1}^{1}(1-x)^{\alpha }(1+x)^{\beta }P_{m}^{(\alpha ,\beta )}(x)P_{n}^{(\alpha ,\beta )}(x)\,dx={\frac {2^{\alpha +\beta +1}}{2n+\alpha +\beta +1}}{\frac {\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{\Gamma (n+\alpha +\beta +1)n!}}\delta _{nm},\qquad \alpha ,\ \beta >-1.} 
   
 As defined, they do not have unit norm with respect to the weight. This can be corrected by dividing by the square root of the right hand side of the equation above, when 
  
    
      
        n 
        = 
        m 
       
     
    {\displaystyle n=m} 
   
 
Although it does not yield an orthonormal basis, an alternative normalization is sometimes preferred due to its simplicity:
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        1 
        ) 
        = 
        
          
            
              ( 
             
            
              
                n 
                + 
                α 
               
              n 
             
            
              ) 
             
           
         
        . 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(1)={n+\alpha  \choose n}.} 
   
 
Symmetry relation 
The polynomials have the symmetry relation
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        − 
        z 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          P 
          
            n 
           
          
            ( 
            β 
            , 
            α 
            ) 
           
         
        ( 
        z 
        ) 
        ; 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(-z)=(-1)^{n}P_{n}^{(\beta ,\alpha )}(z);} 
   
 thus the other terminal value is
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        − 
        1 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          
            
              ( 
             
            
              
                n 
                + 
                β 
               
              n 
             
            
              ) 
             
           
         
        . 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(-1)=(-1)^{n}{n+\beta  \choose n}.} 
   
 
Derivatives 
The 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
 
  
    
      
        
          
            
              d 
              
                k 
               
             
            
              d 
              
                z 
                
                  k 
                 
               
             
           
         
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              Γ 
              ( 
              α 
              + 
              β 
              + 
              n 
              + 
              1 
              + 
              k 
              ) 
             
            
              
                2 
                
                  k 
                 
               
              Γ 
              ( 
              α 
              + 
              β 
              + 
              n 
              + 
              1 
              ) 
             
           
         
        
          P 
          
            n 
            − 
            k 
           
          
            ( 
            α 
            + 
            k 
            , 
            β 
            + 
            k 
            ) 
           
         
        ( 
        z 
        ) 
        . 
       
     
    {\displaystyle {\frac {d^{k}}{dz^{k}}}P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +\beta +n+1+k)}{2^{k}\Gamma (\alpha +\beta +n+1)}}P_{n-k}^{(\alpha +k,\beta +k)}(z).} 
   
 
Recurrence relations 
The 3-term recurrence relation  for the Jacobi polynomials of fixed 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 [ 1] : IV.5  
  
    
      
        
          
            
              
                2 
                n 
                ( 
                n 
                + 
                α 
                + 
                β 
                ) 
                ( 
                2 
                n 
                + 
                α 
                + 
                β 
                − 
                2 
                ) 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                ( 
                z 
                ) 
               
             
            
              
                = 
                ( 
                2 
                n 
                + 
                α 
                + 
                β 
                − 
                1 
                ) 
                
                  
                    { 
                   
                 
                ( 
                2 
                n 
                + 
                α 
                + 
                β 
                ) 
                ( 
                2 
                n 
                + 
                α 
                + 
                β 
                − 
                2 
                ) 
                z 
                + 
                
                  α 
                  
                    2 
                   
                 
                − 
                
                  β 
                  
                    2 
                   
                 
                
                  
                    } 
                   
                 
                
                  P 
                  
                    n 
                    − 
                    1 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                ( 
                z 
                ) 
                − 
                2 
                ( 
                n 
                + 
                α 
                − 
                1 
                ) 
                ( 
                n 
                + 
                β 
                − 
                1 
                ) 
                ( 
                2 
                n 
                + 
                α 
                + 
                β 
                ) 
                
                  P 
                  
                    n 
                    − 
                    2 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                ( 
                z 
                ) 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&2n(n+\alpha +\beta )(2n+\alpha +\beta -2)P_{n}^{(\alpha ,\beta )}(z)\\&\qquad =(2n+\alpha +\beta -1){\Big \{}(2n+\alpha +\beta )(2n+\alpha +\beta -2)z+\alpha ^{2}-\beta ^{2}{\Big \}}P_{n-1}^{(\alpha ,\beta )}(z)-2(n+\alpha -1)(n+\beta -1)(2n+\alpha +\beta )P_{n-2}^{(\alpha ,\beta )}(z),\end{aligned}}} 
   
 for 
  
    
      
        n 
        = 
        2 
        , 
        3 
        , 
        … 
       
     
    {\displaystyle n=2,3,\ldots } 
   
 
  
    
      
        a 
        := 
        n 
        + 
        α 
       
     
    {\displaystyle a:=n+\alpha } 
   
 
  
    
      
        b 
        := 
        n 
        + 
        β 
       
     
    {\displaystyle b:=n+\beta } 
   
 
  
    
      
        c 
        := 
        a 
        + 
        b 
        = 
        2 
        n 
        + 
        α 
        + 
        β 
       
     
    {\displaystyle c:=a+b=2n+\alpha +\beta } 
   
 
  
    
      
        a 
        , 
        b 
        , 
        c 
       
     
    {\displaystyle a,b,c} 
   
 
  
    
      
        2 
        n 
        ( 
        c 
        − 
        n 
        ) 
        ( 
        c 
        − 
        2 
        ) 
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        ( 
        c 
        − 
        1 
        ) 
        
          
            { 
           
         
        c 
        ( 
        c 
        − 
        2 
        ) 
        z 
        + 
        ( 
        a 
        − 
        b 
        ) 
        ( 
        c 
        − 
        2 
        n 
        ) 
        
          
            } 
           
         
        
          P 
          
            n 
            − 
            1 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        − 
        2 
        ( 
        a 
        − 
        1 
        ) 
        ( 
        b 
        − 
        1 
        ) 
        c 
        
          P 
          
            n 
            − 
            2 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        . 
       
     
    {\displaystyle 2n(c-n)(c-2)P_{n}^{(\alpha ,\beta )}(z)=(c-1){\Big \{}c(c-2)z+(a-b)(c-2n){\Big \}}P_{n-1}^{(\alpha ,\beta )}(z)-2(a-1)(b-1)c\;P_{n-2}^{(\alpha ,\beta )}(z).} 
   
 Since the Jacobi polynomials can be described in terms of the hypergeometric function, recurrences of the hypergeometric function give equivalent recurrences of the Jacobi polynomials. In particular, Gauss' contiguous relations  correspond to the identities[ 4] : Appx.B  
  
    
      
        
          
            
              
                ( 
                z 
                − 
                1 
                ) 
                
                  
                    d 
                    
                      d 
                      z 
                     
                   
                 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                ( 
                z 
                ) 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                ( 
                z 
                − 
                1 
                ) 
                ( 
                1 
                + 
                α 
                + 
                β 
                + 
                n 
                ) 
                
                  P 
                  
                    n 
                    − 
                    1 
                   
                  
                    ( 
                    α 
                    + 
                    1 
                    , 
                    β 
                    + 
                    1 
                    ) 
                   
                 
               
             
            
              
                = 
                n 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                − 
                ( 
                α 
                + 
                n 
                ) 
                
                  P 
                  
                    n 
                    − 
                    1 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    + 
                    1 
                    ) 
                   
                 
               
             
            
              
                = 
                ( 
                1 
                + 
                α 
                + 
                β 
                + 
                n 
                ) 
                
                  ( 
                  
                    
                      P 
                      
                        n 
                       
                      
                        ( 
                        α 
                        , 
                        β 
                        + 
                        1 
                        ) 
                       
                     
                    − 
                    
                      P 
                      
                        n 
                       
                      
                        ( 
                        α 
                        , 
                        β 
                        ) 
                       
                     
                   
                  ) 
                 
               
             
            
              
                = 
                ( 
                α 
                + 
                n 
                ) 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    − 
                    1 
                    , 
                    β 
                    + 
                    1 
                    ) 
                   
                 
                − 
                α 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
               
             
            
              
                = 
                
                  
                    
                      2 
                      ( 
                      n 
                      + 
                      1 
                      ) 
                      
                        P 
                        
                          n 
                          + 
                          1 
                         
                        
                          ( 
                          α 
                          , 
                          β 
                          − 
                          1 
                          ) 
                         
                       
                      − 
                      
                        ( 
                        
                          z 
                          ( 
                          1 
                          + 
                          α 
                          + 
                          β 
                          + 
                          n 
                          ) 
                          + 
                          α 
                          + 
                          1 
                          + 
                          n 
                          − 
                          β 
                         
                        ) 
                       
                      
                        P 
                        
                          n 
                         
                        
                          ( 
                          α 
                          , 
                          β 
                          ) 
                         
                       
                     
                    
                      1 
                      + 
                      z 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      ( 
                      2 
                      β 
                      + 
                      n 
                      + 
                      n 
                      z 
                      ) 
                      
                        P 
                        
                          n 
                         
                        
                          ( 
                          α 
                          , 
                          β 
                          ) 
                         
                       
                      − 
                      2 
                      ( 
                      β 
                      + 
                      n 
                      ) 
                      
                        P 
                        
                          n 
                         
                        
                          ( 
                          α 
                          , 
                          β 
                          − 
                          1 
                          ) 
                         
                       
                     
                    
                      1 
                      + 
                      z 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      1 
                      − 
                      z 
                     
                    
                      1 
                      + 
                      z 
                     
                   
                 
                
                  ( 
                  
                    β 
                    
                      P 
                      
                        n 
                       
                      
                        ( 
                        α 
                        , 
                        β 
                        ) 
                       
                     
                    − 
                    ( 
                    β 
                    + 
                    n 
                    ) 
                    
                      P 
                      
                        n 
                       
                      
                        ( 
                        α 
                        + 
                        1 
                        , 
                        β 
                        − 
                        1 
                        ) 
                       
                     
                   
                  ) 
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}(z-1){\frac {d}{dz}}P_{n}^{(\alpha ,\beta )}(z)&={\frac {1}{2}}(z-1)(1+\alpha +\beta +n)P_{n-1}^{(\alpha +1,\beta +1)}\\&=nP_{n}^{(\alpha ,\beta )}-(\alpha +n)P_{n-1}^{(\alpha ,\beta +1)}\\&=(1+\alpha +\beta +n)\left(P_{n}^{(\alpha ,\beta +1)}-P_{n}^{(\alpha ,\beta )}\right)\\&=(\alpha +n)P_{n}^{(\alpha -1,\beta +1)}-\alpha P_{n}^{(\alpha ,\beta )}\\&={\frac {2(n+1)P_{n+1}^{(\alpha ,\beta -1)}-\left(z(1+\alpha +\beta +n)+\alpha +1+n-\beta \right)P_{n}^{(\alpha ,\beta )}}{1+z}}\\&={\frac {(2\beta +n+nz)P_{n}^{(\alpha ,\beta )}-2(\beta +n)P_{n}^{(\alpha ,\beta -1)}}{1+z}}\\&={\frac {1-z}{1+z}}\left(\beta P_{n}^{(\alpha ,\beta )}-(\beta +n)P_{n}^{(\alpha +1,\beta -1)}\right)\,.\end{aligned}}} 
   
 
Generating function 
The generating function  of the Jacobi polynomials is given by
  
    
      
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        z 
        ) 
        
          t 
          
            n 
           
         
        = 
        
          2 
          
            α 
            + 
            β 
           
         
        
          R 
          
            − 
            1 
           
         
        ( 
        1 
        − 
        t 
        + 
        R 
        
          ) 
          
            − 
            α 
           
         
        ( 
        1 
        + 
        t 
        + 
        R 
        
          ) 
          
            − 
            β 
           
         
        , 
       
     
    {\displaystyle \sum _{n=0}^{\infty }P_{n}^{(\alpha ,\beta )}(z)t^{n}=2^{\alpha +\beta }R^{-1}(1-t+R)^{-\alpha }(1+t+R)^{-\beta },} 
   
 where
  
    
      
        R 
        = 
        R 
        ( 
        z 
        , 
        t 
        ) 
        = 
        
          
            ( 
            
              1 
              − 
              2 
              z 
              t 
              + 
              
                t 
                
                  2 
                 
               
             
            ) 
           
          
            
              1 
              2 
             
           
         
          
        , 
       
     
    {\displaystyle R=R(z,t)=\left(1-2zt+t^{2}\right)^{\frac {1}{2}}~,} 
   
 and the branch  of square root is chosen so that 
  
    
      
        R 
        ( 
        z 
        , 
        0 
        ) 
        = 
        1 
       
     
    {\displaystyle R(z,0)=1} 
   
 [ 1] : IV.4  
Other polynomials 
The Jacobi polynomials reduce to other classical polynomials.[ 5] 
Ultraspherical :
  
    
      
        
          
            
              
                
                  C 
                  
                    n 
                   
                  
                    ( 
                    λ 
                    ) 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    
                      ( 
                      2 
                      λ 
                      
                        ) 
                        
                          n 
                         
                       
                     
                    
                      
                        ( 
                        
                          λ 
                          + 
                          
                            
                              1 
                              2 
                             
                           
                         
                        ) 
                       
                      
                        n 
                       
                     
                   
                 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        λ 
                        − 
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        λ 
                        − 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                x 
                ) 
                , 
               
             
            
              
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    α 
                    ) 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    
                      ( 
                      α 
                      + 
                      1 
                      
                        ) 
                        
                          n 
                         
                       
                     
                    
                      ( 
                      2 
                      α 
                      + 
                      1 
                      
                        ) 
                        
                          n 
                         
                       
                     
                   
                 
                
                  C 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        α 
                        + 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                x 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}C_{n}^{(\lambda )}(x)&={\frac {(2\lambda )_{n}}{\left(\lambda +{\frac {1}{2}}\right)_{n}}}P_{n}^{\left(\lambda -{\frac {1}{2}},\lambda -{\frac {1}{2}}\right)}(x),\\P_{n}^{(\alpha ,\alpha )}(x)&={\frac {(\alpha +1)_{n}}{(2\alpha +1)_{n}}}C_{n}^{\left(\alpha +{\frac {1}{2}}\right)}(x).\end{aligned}}} 
   
 Legendre :
  
    
      
        
          P 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          C 
          
            n 
           
          
            
              ( 
              
                
                  1 
                  2 
                 
               
              ) 
             
           
         
        ( 
        x 
        ) 
        = 
        
          P 
          
            n 
           
          
            ( 
            0 
            , 
            0 
            ) 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle P_{n}(x)=C_{n}^{\left({\frac {1}{2}}\right)}(x)=P_{n}^{(0,0)}(x)} 
   
 Chebyshev :
  
    
      
        
          
            
              
                
                  T 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        − 
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        − 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                x 
                ) 
                
                  / 
                 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        − 
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        − 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                1 
                ) 
                , 
               
             
            
              
                
                  U 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  C 
                  
                    n 
                   
                  
                    ( 
                    1 
                    ) 
                   
                 
                ( 
                x 
                ) 
                = 
                ( 
                n 
                + 
                1 
                ) 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                x 
                ) 
                
                  / 
                 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                1 
                ) 
                , 
               
             
            
              
                
                  V 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        − 
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                x 
                ) 
                
                  / 
                 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        − 
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                1 
                ) 
                , 
               
             
            
              
                
                  W 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                ( 
                2 
                n 
                + 
                1 
                ) 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        − 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                x 
                ) 
                
                  / 
                 
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        
                          
                            1 
                            2 
                           
                         
                        , 
                        − 
                        
                          
                            1 
                            2 
                           
                         
                       
                      ) 
                     
                   
                 
                ( 
                1 
                ) 
                . 
               
             
            
              
                
                  T 
                  
                    n 
                   
                  
                    ∗ 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  T 
                  
                    n 
                   
                 
                ( 
                2 
                x 
                − 
                1 
                ) 
                , 
               
             
            
              
                
                  U 
                  
                    n 
                   
                  
                    ∗ 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  U 
                  
                    n 
                   
                 
                ( 
                2 
                x 
                − 
                1 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}T_{n}(x)&=P_{n}^{\left(-{\frac {1}{2}},-{\frac {1}{2}}\right)}(x)/P_{n}^{\left(-{\frac {1}{2}},-{\frac {1}{2}}\right)}(1),\\U_{n}(x)&=C_{n}^{(1)}(x)=(n+1)P_{n}^{\left({\frac {1}{2}},{\frac {1}{2}}\right)}(x)/P_{n}^{\left({\frac {1}{2}},{\frac {1}{2}}\right)}(1),\\V_{n}(x)&=P_{n}^{\left(-{\frac {1}{2}},{\frac {1}{2}}\right)}(x)/P_{n}^{\left(-{\frac {1}{2}},{\frac {1}{2}}\right)}(1),\\W_{n}(x)&=(2n+1)P_{n}^{\left({\frac {1}{2}},-{\frac {1}{2}}\right)}(x)/P_{n}^{\left({\frac {1}{2}},-{\frac {1}{2}}\right)}(1).\\T_{n}^{*}(x)&=T_{n}(2x-1),\\U_{n}^{*}(x)&=U_{n}(2x-1).\end{aligned}}} 
   
 Laguerre :
  
    
      
        
          
            
              
                
                  lim 
                  
                    β 
                    → 
                    ∞ 
                   
                 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                ( 
                1 
                − 
                ( 
                2 
                x 
                
                  / 
                 
                β 
                ) 
                ) 
               
              
                = 
                
                  L 
                  
                    n 
                   
                  
                    ( 
                    α 
                    ) 
                   
                 
                ( 
                x 
                ) 
                . 
               
             
            
              
                
                  lim 
                  
                    α 
                    → 
                    ∞ 
                   
                 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                ( 
                ( 
                2 
                x 
                
                  / 
                 
                α 
                ) 
                − 
                1 
                ) 
               
              
                = 
                ( 
                − 
                1 
                
                  ) 
                  
                    n 
                   
                 
                
                  L 
                  
                    n 
                   
                  
                    ( 
                    β 
                    ) 
                   
                 
                ( 
                x 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lim _{\beta \rightarrow \infty }P_{n}^{(\alpha ,\beta )}(1-(2x/\beta ))&=L_{n}^{(\alpha )}(x).\\\lim _{\alpha \rightarrow \infty }P_{n}^{(\alpha ,\beta )}((2x/\alpha )-1)&=(-1)^{n}L_{n}^{(\beta )}(x).\end{aligned}}} 
   
 
  
    
      
        
          lim 
          
            α 
            → 
            ∞ 
           
         
        
          α 
          
            − 
            
              
                1 
                2 
               
             
            n 
           
         
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            α 
            ) 
           
         
        
          ( 
          
            
              α 
              
                − 
                
                  
                    1 
                    2 
                   
                 
               
             
            x 
           
          ) 
         
        = 
        
          
            
              
                H 
                
                  n 
                 
               
              ( 
              x 
              ) 
             
            
              
                2 
                
                  n 
                 
               
              n 
              ! 
             
           
         
       
     
    {\displaystyle \lim _{\alpha \rightarrow \infty }\alpha ^{-{\frac {1}{2}}n}P_{n}^{(\alpha ,\alpha )}\left(\alpha ^{-{\frac {1}{2}}}x\right)={\frac {H_{n}(x)}{2^{n}n!}}} 
   
 
Stochastic process 
The Jacobi polynomials appear as the eigenfunctions of the Markov process  on 
  
    
      
        [ 
        − 
        1 
        , 
        + 
        1 
        ] 
       
     
    {\displaystyle [-1,+1]} 
   
 
  
    
      
        
          
            L 
           
         
        = 
        
          ( 
          
            1 
            − 
            
              x 
              
                2 
               
             
           
          ) 
         
        
          
            
              ∂ 
              
                2 
               
             
            
              
                ∂ 
                
                  2 
                 
               
              x 
             
           
         
        + 
        ( 
        p 
        x 
        + 
        q 
        ) 
        
          
            ∂ 
            
              ∂ 
              x 
             
           
         
       
     
    {\displaystyle {\mathcal {L}}=\left(1-x^{2}\right){\frac {\partial ^{2}}{\partial ^{2}x}}+(px+q){\frac {\partial }{\partial x}}} 
   
 
  
    
      
        p 
        = 
        − 
        ( 
        β 
        + 
        α 
        + 
        2 
        ) 
        , 
        q 
        = 
        β 
        − 
        α 
       
     
    {\displaystyle p=-(\beta +\alpha +2),q=\beta -\alpha } 
   
 
  
    
      
        
          
            L 
           
         
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        = 
        − 
        n 
        ( 
        n 
        + 
        α 
        + 
        β 
        + 
        1 
        ) 
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle {\mathcal {L}}P_{n}^{(\alpha ,\beta )}=-n(n+\alpha +\beta +1)P_{n}^{(\alpha ,\beta )}} 
   
 Jacobi process .[ 6] [ 7] 
Heat kernel 
Let
  
    
      
        
          J 
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        := 
        − 
        
          ( 
          
            1 
            − 
            
              x 
              
                2 
               
             
           
          ) 
         
        
          
            
              d 
              
                2 
               
             
            
              d 
              
                x 
                
                  2 
                 
               
             
           
         
        − 
        [ 
        β 
        − 
        α 
        − 
        ( 
        α 
        + 
        β 
        + 
        2 
        ) 
        x 
        ] 
        
          
            d 
            
              d 
              x 
             
           
         
       
     
    {\displaystyle J^{(\alpha ,\beta )}:=-\left(1-x^{2}\right){\frac {d^{2}}{dx^{2}}}-[\beta -\alpha -(\alpha +\beta +2)x]{\frac {d}{dx}}} 
   
 
  
    
      
        
          T 
          
            t 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        := 
        
          e 
          
            − 
            t 
            
              J 
              
                ( 
                α 
                , 
                β 
                ) 
               
             
           
         
       
     
    {\displaystyle T_{t}^{(\alpha ,\beta )}:=e^{-tJ^{(\alpha ,\beta )}}} 
   
 
  
    
      
        
          h 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        = 
        
          ∫ 
          
            − 
            1 
           
          
            1 
           
         
        
          
            [ 
            
              
                P 
                
                  n 
                 
                
                  ( 
                  α 
                  , 
                  β 
                  ) 
                 
               
              ( 
              x 
              ) 
             
            ] 
           
          
            2 
           
         
        ( 
        1 
        − 
        x 
        
          ) 
          
            α 
           
         
        ( 
        1 
        + 
        x 
        
          ) 
          
            β 
           
         
        d 
        x 
        = 
        
          
            
              
                2 
                
                  α 
                  + 
                  β 
                  + 
                  1 
                 
               
              Γ 
              ( 
              n 
              + 
              α 
              + 
              1 
              ) 
              Γ 
              ( 
              n 
              + 
              β 
              + 
              1 
              ) 
             
            
              ( 
              2 
              n 
              + 
              α 
              + 
              β 
              + 
              1 
              ) 
              Γ 
              ( 
              n 
              + 
              α 
              + 
              β 
              + 
              1 
              ) 
              Γ 
              ( 
              n 
              + 
              1 
              ) 
             
           
         
       
     
    {\displaystyle h_{n}^{(\alpha ,\beta )}=\int _{-1}^{1}\left[P_{n}^{(\alpha ,\beta )}(x)\right]^{2}(1-x)^{\alpha }(1+x)^{\beta }dx={\frac {2^{\alpha +\beta +1}\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{(2n+\alpha +\beta +1)\Gamma (n+\alpha +\beta +1)\Gamma (n+1)}}} 
   
 
  
    
      
        
          G 
          
            t 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        , 
        y 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        exp 
         
        ( 
        − 
        t 
        n 
        ( 
        n 
        + 
        α 
        + 
        β 
        + 
        1 
        ) 
        ) 
        
          
            
              
                P 
                
                  n 
                 
                
                  ( 
                  α 
                  , 
                  β 
                  ) 
                 
               
              ( 
              x 
              ) 
              
                P 
                
                  n 
                 
                
                  ( 
                  α 
                  , 
                  β 
                  ) 
                 
               
              ( 
              y 
              ) 
             
            
              h 
              
                n 
               
              
                ( 
                α 
                , 
                β 
                ) 
               
             
           
         
        , 
        x 
        , 
        y 
        ∈ 
        [ 
        − 
        1 
        , 
        1 
        ] 
        , 
        t 
        > 
        0 
        , 
       
     
    {\displaystyle G_{t}^{(\alpha ,\beta )}(x,y)=\sum _{n=0}^{\infty }\exp(-tn(n+\alpha +\beta +1)){\frac {P_{n}^{(\alpha ,\beta )}(x)P_{n}^{(\alpha ,\beta )}(y)}{h_{n}^{(\alpha ,\beta )}}},\quad x,y\in [-1,1],\quad t>0,} 
   
 
  
    
      
        d 
        
          ρ 
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        ) 
        = 
        ( 
        1 
        − 
        x 
        
          ) 
          
            α 
           
         
        ( 
        1 
        + 
        x 
        
          ) 
          
            β 
           
         
        d 
        x 
       
     
    {\displaystyle d\rho _{(\alpha ,\beta )}(x)=(1-x)^{\alpha }(1+x)^{\beta }dx} 
   
 Then, for any 
  
    
      
        f 
        ∈ 
        
          L 
          
            1 
           
         
        
          ( 
          
            d 
            
              ρ 
              
                ( 
                α 
                , 
                β 
                ) 
               
             
           
          ) 
         
       
     
    {\displaystyle f\in L^{1}\left(d\rho _{(\alpha ,\beta )}\right)} 
   
 [ 8] 
  
    
      
        
          T 
          
            t 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        f 
        ( 
        x 
        ) 
        = 
        
          ∫ 
          
            − 
            1 
           
          
            1 
           
         
        
          G 
          
            t 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        x 
        , 
        y 
        ) 
        f 
        ( 
        y 
        ) 
        d 
        
          ϱ 
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        y 
        ) 
       
     
    {\displaystyle T_{t}^{(\alpha ,\beta )}f(x)=\int _{-1}^{1}G_{t}^{(\alpha ,\beta )}(x,y)f(y)d\varrho _{(\alpha ,\beta )}(y)} 
   
 
  
    
      
        
          G 
          
            t 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle G_{t}^{(\alpha ,\beta )}} 
   
 Jacobi heat kernel  .
Other properties 
The discriminant  is[ 9] 
  
    
      
        Disc 
         
        
          ( 
          
            P 
            
              n 
             
            
              ( 
              α 
              , 
              β 
              ) 
             
           
          ) 
         
        = 
        
          2 
          
            − 
            n 
            ( 
            n 
            − 
            1 
            ) 
           
         
        
          ∏ 
          
            j 
            = 
            1 
           
          
            n 
           
         
        
          j 
          
            j 
            − 
            2 
            n 
            + 
            2 
           
         
        ( 
        j 
        + 
        α 
        
          ) 
          
            j 
            − 
            1 
           
         
        ( 
        j 
        + 
        β 
        
          ) 
          
            j 
            − 
            1 
           
         
        ( 
        n 
        + 
        j 
        + 
        α 
        + 
        β 
        
          ) 
          
            n 
            − 
            j 
           
         
       
     
    {\displaystyle \operatorname {Disc} \left(P_{n}^{(\alpha ,\beta )}\right)=2^{-n(n-1)}\prod _{j=1}^{n}j^{j-2n+2}(j+\alpha )^{j-1}(j+\beta )^{j-1}(n+j+\alpha +\beta )^{n-j}} 
   
 Bailey’s formula :[ 8] [ 10] 
  
    
      
        
          
            
              
                
                  ∑ 
                  
                    n 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        P 
                        
                          n 
                         
                        
                          ( 
                          α 
                          , 
                          β 
                          ) 
                         
                       
                      ( 
                      cos 
                       
                      θ 
                      ) 
                      
                        P 
                        
                          n 
                         
                        
                          ( 
                          α 
                          , 
                          β 
                          ) 
                         
                       
                      ( 
                      cos 
                       
                      φ 
                      ) 
                     
                    
                      h 
                      
                        n 
                       
                      
                        ( 
                        α 
                        , 
                        β 
                        ) 
                       
                     
                   
                 
                
                  r 
                  
                    n 
                   
                 
                = 
                
                  
                    
                      Γ 
                      ( 
                      α 
                      + 
                      β 
                      + 
                      2 
                      ) 
                     
                    
                      
                        2 
                        
                          α 
                          + 
                          β 
                          + 
                          1 
                         
                       
                      Γ 
                      ( 
                      α 
                      + 
                      1 
                      ) 
                      Γ 
                      ( 
                      β 
                      + 
                      1 
                      ) 
                     
                   
                 
                
                  
                    
                      1 
                      − 
                      r 
                     
                    
                      ( 
                      1 
                      + 
                      r 
                      
                        ) 
                        
                          α 
                          + 
                          β 
                          + 
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                × 
                
                  F 
                  
                    4 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          α 
                          + 
                          β 
                          + 
                          2 
                         
                        2 
                       
                     
                    , 
                    
                      
                        
                          α 
                          + 
                          β 
                          + 
                          3 
                         
                        2 
                       
                     
                    ; 
                    α 
                    + 
                    1 
                    , 
                    β 
                    + 
                    1 
                    ; 
                    
                      
                        ( 
                        
                          
                            
                              2 
                              sin 
                               
                              
                                
                                  θ 
                                  2 
                                 
                               
                              sin 
                               
                              
                                
                                  φ 
                                  2 
                                 
                               
                             
                            
                              
                                r 
                                
                                  1 
                                  
                                    / 
                                   
                                  2 
                                 
                               
                              + 
                              
                                r 
                                
                                  − 
                                  1 
                                  
                                    / 
                                   
                                  2 
                                 
                               
                             
                           
                         
                        ) 
                       
                      
                        2 
                       
                     
                    , 
                    
                      
                        ( 
                        
                          
                            
                              2 
                              cos 
                               
                              
                                
                                  θ 
                                  2 
                                 
                               
                              cos 
                               
                              
                                
                                  φ 
                                  2 
                                 
                               
                             
                            
                              
                                r 
                                
                                  1 
                                  
                                    / 
                                   
                                  2 
                                 
                               
                              + 
                              
                                r 
                                
                                  − 
                                  1 
                                  
                                    / 
                                   
                                  2 
                                 
                               
                             
                           
                         
                        ) 
                       
                      
                        2 
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\sum _{n=0}^{\infty }{\frac {P_{n}^{(\alpha ,\beta )}(\cos \theta )P_{n}^{(\alpha ,\beta )}(\cos \varphi )}{h_{n}^{(\alpha ,\beta )}}}r^{n}={\frac {\Gamma (\alpha +\beta +2)}{2^{\alpha +\beta +1}\Gamma (\alpha +1)\Gamma (\beta +1)}}{\frac {1-r}{(1+r)^{\alpha +\beta +2}}}\\&\quad \times F_{4}\left({\frac {\alpha +\beta +2}{2}},{\frac {\alpha +\beta +3}{2}};\alpha +1,\beta +1;\left({\frac {2\sin {\frac {\theta }{2}}\sin {\frac {\varphi }{2}}}{r^{1/2}+r^{-1/2}}}\right)^{2},\left({\frac {2\cos {\frac {\theta }{2}}\cos {\frac {\varphi }{2}}}{r^{1/2}+r^{-1/2}}}\right)^{2}\right)\end{aligned}}} 
   
 
  
    
      
        
          | 
         
        r 
        
          | 
         
        < 
        1 
        , 
        α 
        , 
        β 
        > 
        − 
        1 
       
     
    {\displaystyle |r|<1,\alpha ,\beta >-1} 
   
 
  
    
      
        
          F 
          
            4 
           
         
       
     
    {\displaystyle F_{4}} 
   
 Appel's hypergeometric function of two variables . This is an analog of the Mehler kernel  for Hermite polynomials, and the Hardy–Hille formula  for Laguerre polynomials.
Laplace-type integral representation :[ 11] 
  
    
      
        
          
            
              
                
                  P 
                  
                    n 
                   
                  
                    
                      ( 
                      
                        α 
                        , 
                        β 
                       
                      ) 
                     
                   
                 
                
                  ( 
                  
                    1 
                    − 
                    2 
                    
                      t 
                      
                        2 
                       
                     
                   
                  ) 
                 
                = 
               
              
                
                  
                    
                      ( 
                      − 
                      1 
                      
                        ) 
                        
                          n 
                         
                       
                      
                        2 
                        
                          2 
                          n 
                         
                       
                     
                    
                      π 
                      ( 
                      2 
                      n 
                      ) 
                      ! 
                     
                   
                 
                
                  
                    
                      Γ 
                      ( 
                      n 
                      + 
                      α 
                      + 
                      1 
                      ) 
                      Γ 
                      ( 
                      n 
                      + 
                      β 
                      + 
                      1 
                      ) 
                     
                    
                      Γ 
                      
                        ( 
                        
                          α 
                          + 
                          
                            
                              1 
                              2 
                             
                           
                         
                        ) 
                       
                      Γ 
                      
                        ( 
                        
                          β 
                          + 
                          
                            
                              1 
                              2 
                             
                           
                         
                        ) 
                       
                     
                   
                 
                . 
               
             
            
              
                
                  ∫ 
                  
                    − 
                    1 
                   
                  
                    1 
                   
                 
                
                  ∫ 
                  
                    − 
                    1 
                   
                  
                    1 
                   
                 
                
                  
                    ( 
                    
                      t 
                      u 
                      ± 
                      i 
                      
                        
                          1 
                          − 
                          
                            t 
                            
                              2 
                             
                           
                         
                       
                      v 
                     
                    ) 
                   
                  
                    2 
                    n 
                   
                 
                
                  
                    ( 
                    
                      1 
                      − 
                      
                        u 
                        
                          2 
                         
                       
                     
                    ) 
                   
                  
                    α 
                    − 
                    
                      
                        1 
                        2 
                       
                     
                   
                 
                
                  
                    ( 
                    
                      1 
                      − 
                      
                        v 
                        
                          2 
                         
                       
                     
                    ) 
                   
                  
                    β 
                    − 
                    
                      
                        1 
                        2 
                       
                     
                   
                 
                d 
                u 
                d 
                v 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}P_{n}^{\left(\alpha ,\beta \right)}\left(1-2t^{2}\right)=&{\frac {(-1)^{n}2^{2n}}{\pi (2n)!}}{\frac {\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{\Gamma \left(\alpha +{\frac {1}{2}}\right)\Gamma \left(\beta +{\frac {1}{2}}\right)}}.\\&\int _{-1}^{1}\int _{-1}^{1}\left(tu\pm i{\sqrt {1-t^{2}}}v\right)^{2n}\left(1-u^{2}\right)^{\alpha -{\frac {1}{2}}}\left(1-v^{2}\right)^{\beta -{\frac {1}{2}}}dudv.\end{aligned}}} 
   
 
Zeroes 
If 
  
    
      
        α 
        , 
        β 
        > 
        − 
        1 
       
     
    {\displaystyle \alpha ,\beta >-1} 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        α 
        , 
        β 
        > 
        − 
        1 
       
     
    {\displaystyle \alpha ,\beta >-1} 
   
 [ 12] [ 13] 
Define:
  
    
      
        
          j 
          
            α 
            , 
            m 
           
         
       
     
    {\displaystyle j_{\alpha ,m}} 
   
 Bessel function of the first kind  
  
    
      
        
          J 
          
            α 
           
         
       
     
    {\displaystyle J_{\alpha }} 
   
 
  
    
      
        0 
        < 
        
          j 
          
            α 
            , 
            1 
           
         
        < 
        
          j 
          
            α 
            , 
            2 
           
         
        < 
        ⋯ 
       
     
    {\displaystyle 0<j_{\alpha ,1}<j_{\alpha ,2}<\cdots } 
   
 
  
    
      
        
          θ 
          
            n 
            , 
            m 
           
         
        = 
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle \theta _{n,m}=\theta _{n,m}^{(\alpha ,\beta )}} 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        
          ( 
          
            cos 
             
            θ 
           
          ) 
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}\left(\cos \theta \right)} 
   
 
  
    
      
        0 
        < 
        
          θ 
          
            n 
            , 
            1 
           
         
        < 
        
          θ 
          
            n 
            , 
            2 
           
         
        < 
        ⋯ 
        < 
        
          θ 
          
            n 
            , 
            n 
           
         
        < 
        π 
       
     
    {\displaystyle 0<\theta _{n,1}<\theta _{n,2}<\cdots <\theta _{n,n}<\pi } 
   
 
  
    
      
        ρ 
        = 
        n 
        + 
        
          
            1 
            2 
           
         
        ( 
        α 
        + 
        β 
        + 
        1 
        ) 
       
     
    {\displaystyle \rho =n+{\frac {1}{2}}(\alpha +\beta +1)} 
   
 
  
    
      
        
          ϕ 
          
            m 
           
         
        = 
        
          j 
          
            α 
            , 
            m 
           
         
        
          / 
         
        ρ 
       
     
    {\displaystyle \phi _{m}=j_{\alpha ,m}/\rho } 
   
 
Inequalities 
  
    
      
        
          θ 
          
            n 
            , 
            m 
           
         
       
     
    {\displaystyle \theta _{n,m}} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 [ 12] 
If 
  
    
      
        α 
        = 
        β 
       
     
    {\displaystyle \alpha =\beta } 
   
 
  
    
      
        m 
        < 
        n 
        
          / 
         
        2 
       
     
    {\displaystyle m<n/2} 
   
 
  
    
      
        
          θ 
          
            n 
            , 
            m 
           
         
       
     
    {\displaystyle \theta _{n,m}} 
   
 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 [ 12] 
When 
  
    
      
        α 
        , 
        β 
        ∈ 
        [ 
        − 
        1 
        
          / 
         
        2 
        , 
        + 
        1 
        
          / 
         
        2 
        ] 
       
     
    {\displaystyle \alpha ,\beta \in [-1/2,+1/2]} 
   
 [ 12] 
  
    
      
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            − 
            
              
                1 
                2 
               
             
            , 
            
              
                1 
                2 
               
             
            ) 
           
         
        = 
        
          
            
              ( 
              m 
              − 
              
                
                  
                    1 
                    2 
                   
                 
               
              ) 
              π 
             
            
              n 
              + 
              
                
                  
                    1 
                    2 
                   
                 
               
             
           
         
        ≤ 
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ≤ 
        
          
            
              m 
              π 
             
            
              n 
              + 
              
                
                  
                    1 
                    2 
                   
                 
               
             
           
         
        = 
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            
              
                1 
                2 
               
             
            , 
            − 
            
              
                1 
                2 
               
             
            ) 
           
         
       
     
    {\displaystyle \theta _{n,m}^{(-{\frac {1}{2}},{\frac {1}{2}})}={\frac {(m-{\tfrac {1}{2}})\pi }{n+{\tfrac {1}{2}}}}\leq \theta _{n,m}^{(\alpha ,\beta )}\leq {\frac {m\pi }{n+{\tfrac {1}{2}}}}=\theta _{n,m}^{({\frac {1}{2}},-{\frac {1}{2}})}} 
   
 
  
    
      
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            − 
            
              
                1 
                2 
               
             
            , 
            − 
            
              
                1 
                2 
               
             
            ) 
           
         
        = 
        
          
            
              ( 
              m 
              − 
              
                
                  
                    1 
                    2 
                   
                 
               
              ) 
              π 
             
            n 
           
         
        ≤ 
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            α 
            , 
            α 
            ) 
           
         
        ≤ 
        
          
            
              m 
              π 
             
            
              n 
              + 
              1 
             
           
         
        = 
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            
              
                1 
                2 
               
             
            , 
            
              
                1 
                2 
               
             
            ) 
           
         
       
     
    {\displaystyle \theta _{n,m}^{(-{\frac {1}{2}},-{\frac {1}{2}})}={\frac {(m-{\tfrac {1}{2}})\pi }{n}}\leq \theta _{n,m}^{(\alpha ,\alpha )}\leq {\frac {m\pi }{n+1}}=\theta _{n,m}^{({\frac {1}{2}},{\frac {1}{2}})}} 
   
 
  
    
      
        m 
        ≤ 
        n 
        
          / 
         
        2 
       
     
    {\displaystyle m\leq n/2} 
   
 
  
    
      
        
          
            
              
                
                  ( 
                  
                    m 
                    + 
                    
                      
                        
                          1 
                          2 
                         
                       
                     
                    ( 
                    α 
                    + 
                    β 
                    − 
                    1 
                    ) 
                   
                  ) 
                 
                π 
               
              ρ 
             
           
          < 
          
            θ 
            
              n 
              , 
              m 
             
           
          < 
          
            
              
                m 
                π 
               
              ρ 
             
           
         
       
     
    {\displaystyle {{\frac {\left(m+{\tfrac {1}{2}}(\alpha +\beta -1)\right)\pi }{\rho }}<\theta _{n,m}<{\frac {m\pi }{\rho }}}} 
   
 
  
    
      
        
          α 
          
            2 
           
         
        = 
        
          β 
          
            2 
           
         
        = 
        
          
            
              1 
              4 
             
           
         
       
     
    {\displaystyle \alpha ^{2}=\beta ^{2}={\tfrac {1}{4}}} 
   
 
  
    
      
        
          θ 
          
            n 
            , 
            m 
           
          
            ( 
            α 
            , 
            α 
            ) 
           
         
        > 
        
          
            
              
                ( 
                
                  m 
                  + 
                  
                    
                      
                        1 
                        2 
                       
                     
                   
                  α 
                  − 
                  
                    
                      
                        1 
                        4 
                       
                     
                   
                 
                ) 
               
              
                π 
               
             
            
              n 
              + 
              α 
              + 
              
                
                  
                    1 
                    2 
                   
                 
               
             
           
         
       
     
    {\displaystyle \theta _{n,m}^{(\alpha ,\alpha )}>{\frac {\left(m+{\tfrac {1}{2}}\alpha -{\tfrac {1}{4}}\right){\pi }}{n+\alpha +{\tfrac {1}{2}}}}} 
   
 
  
    
      
        m 
        ≤ 
        n 
        
          / 
         
        2 
       
     
    {\displaystyle m\leq n/2} 
   
 
  
    
      
        
          α 
          
            2 
           
         
        = 
        
          
            
              1 
              4 
             
           
         
       
     
    {\displaystyle \alpha ^{2}={\tfrac {1}{4}}} 
   
 
  
    
      
        
          
            θ 
            
              n 
              , 
              m 
             
           
          
            ≤ 
            
              
                
                  j 
                  
                    α 
                    , 
                    m 
                   
                 
                
                  
                    ( 
                    
                      
                        ρ 
                        
                          2 
                         
                       
                      + 
                      
                        
                          
                            1 
                            12 
                           
                         
                       
                      
                        ( 
                        
                          1 
                          − 
                          
                            α 
                            
                              2 
                             
                           
                          − 
                          3 
                          
                            β 
                            
                              2 
                             
                           
                         
                        ) 
                       
                     
                    ) 
                   
                  
                    
                      1 
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \displaystyle \theta _{n,m}\displaystyle \leq {\frac {j_{\alpha ,m}}{\left(\rho ^{2}+{\tfrac {1}{12}}\left(1-\alpha ^{2}-3\beta ^{2}\right)\right)^{\frac {1}{2}}}}} 
   
 
  
    
      
        
          
            θ 
            
              n 
              , 
              m 
             
           
          
            ≥ 
            
              
                
                  j 
                  
                    α 
                    , 
                    m 
                   
                 
                
                  
                    ( 
                    
                      
                        ρ 
                        
                          2 
                         
                       
                      + 
                      
                        
                          
                            1 
                            4 
                           
                         
                       
                      − 
                      
                        
                          
                            1 
                            2 
                           
                         
                       
                      ( 
                      
                        α 
                        
                          2 
                         
                       
                      + 
                      
                        β 
                        
                          2 
                         
                       
                      ) 
                      − 
                      
                        
                          π 
                         
                        
                          − 
                          2 
                         
                       
                      ( 
                      1 
                      − 
                      4 
                      
                        α 
                        
                          2 
                         
                       
                      ) 
                     
                    ) 
                   
                  
                    
                      1 
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \displaystyle \theta _{n,m}\displaystyle \geq {\frac {j_{\alpha ,m}}{\left(\rho ^{2}+{\tfrac {1}{4}}-{\tfrac {1}{2}}(\alpha ^{2}+\beta ^{2})-{\pi }^{-2}(1-4\alpha ^{2})\right)^{\frac {1}{2}}}}} 
   
 
  
    
      
        m 
        ≤ 
        n 
        
          / 
         
        2 
       
     
    {\displaystyle m\leq n/2} 
   
 
Asymptotics 
Fix 
  
    
      
        α 
        > 
        − 
        1 
        
          / 
         
        2 
        , 
        β 
        ≥ 
        − 
        1 
        − 
        α 
       
     
    {\displaystyle \alpha >-1/2,\beta \geq -1-\alpha } 
   
 
  
    
      
        c 
        ∈ 
        ( 
        0 
        , 
        1 
        ) 
       
     
    {\displaystyle c\in (0,1)} 
   
 
  
    
      
        
          θ 
          
            n 
            , 
            m 
           
         
        = 
        
          ϕ 
          
            m 
           
         
        + 
        
          ( 
          
            
              ( 
              
                
                  α 
                  
                    2 
                   
                 
                − 
                
                  
                    
                      1 
                      4 
                     
                   
                 
               
              ) 
             
            
              
                
                  1 
                  − 
                  
                    ϕ 
                    
                      m 
                     
                   
                  cot 
                   
                  
                    ϕ 
                    
                      m 
                     
                   
                 
                
                  2 
                  
                    ϕ 
                    
                      m 
                     
                   
                 
               
             
            − 
            
              
                
                  1 
                  4 
                 
               
             
            ( 
            
              α 
              
                2 
               
             
            − 
            
              β 
              
                2 
               
             
            ) 
            tan 
             
            
              ( 
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  ϕ 
                  
                    m 
                   
                 
               
              ) 
             
           
          ) 
         
        
          
            1 
            
              ρ 
              
                2 
               
             
           
         
        + 
        
          ϕ 
          
            m 
           
          
            2 
           
         
        O 
        
          ( 
          
            
              1 
              
                ρ 
                
                  3 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \theta _{n,m}=\phi _{m}+\left(\left(\alpha ^{2}-{\tfrac {1}{4}}\right){\frac {1-\phi _{m}\cot \phi _{m}}{2\phi _{m}}}-{\tfrac {1}{4}}(\alpha ^{2}-\beta ^{2})\tan \left({\tfrac {1}{2}}\phi _{m}\right)\right){\frac {1}{\rho ^{2}}}+\phi _{m}^{2}O\left({\frac {1}{\rho ^{3}}}\right)} 
   
 
uniformly for 
  
    
      
        m 
        = 
        1 
        , 
        2 
        , 
        … 
        , 
        
          ⌊ 
          
            c 
            n 
           
          ⌋ 
         
       
     
    {\displaystyle m=1,2,\dots ,\left\lfloor cn\right\rfloor } 
   
 
Electrostatics 
The zeroes satisfy the Stieltjes  relations[ 14] [ 15] 
  
    
      
        
          
            
              
                
                  ∑ 
                  
                    1 
                    ≤ 
                    j 
                    ≤ 
                    n 
                    , 
                    i 
                    ≠ 
                    j 
                   
                 
                
                  
                    1 
                    
                      
                        x 
                        
                          i 
                         
                       
                      − 
                      
                        x 
                        
                          j 
                         
                       
                     
                   
                 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                
                  ( 
                  
                    
                      
                        
                          α 
                          + 
                          1 
                         
                        
                          1 
                          − 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                    − 
                    
                      
                        
                          β 
                          + 
                          1 
                         
                        
                          1 
                          + 
                          
                            x 
                            
                              i 
                             
                           
                         
                       
                     
                   
                  ) 
                 
               
             
            
              
                
                  ∑ 
                  
                    1 
                    ≤ 
                    j 
                    ≤ 
                    n 
                   
                 
                
                  
                    1 
                    
                      1 
                      − 
                      
                        x 
                        
                          j 
                         
                       
                     
                   
                 
               
              
                = 
                
                  
                    
                      n 
                      ( 
                      n 
                      + 
                      α 
                      + 
                      β 
                      + 
                      1 
                      ) 
                     
                    
                      2 
                      ( 
                      α 
                      + 
                      1 
                      ) 
                     
                   
                 
               
             
            
              
                
                  ∑ 
                  
                    1 
                    ≤ 
                    j 
                    ≤ 
                    n 
                   
                 
                
                  
                    1 
                    
                      1 
                      + 
                      
                        x 
                        
                          j 
                         
                       
                     
                   
                 
               
              
                = 
                
                  
                    
                      n 
                      ( 
                      n 
                      + 
                      α 
                      + 
                      β 
                      + 
                      1 
                      ) 
                     
                    
                      2 
                      ( 
                      β 
                      + 
                      1 
                      ) 
                     
                   
                 
               
             
            
              
                
                  ∑ 
                  
                    1 
                    ≤ 
                    j 
                    ≤ 
                    n 
                   
                 
                
                  x 
                  
                    j 
                   
                 
               
              
                = 
                
                  
                    
                      n 
                      ( 
                      β 
                      − 
                      α 
                      ) 
                     
                    
                      2 
                      n 
                      + 
                      α 
                      + 
                      β 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sum _{1\leq j\leq n,i\neq j}{\frac {1}{x_{i}-x_{j}}}&={\frac {1}{2}}\left({\frac {\alpha +1}{1-x_{i}}}-{\frac {\beta +1}{1+x_{i}}}\right)\\\sum _{1\leq j\leq n}{\frac {1}{1-x_{j}}}&={\frac {n(n+\alpha +\beta +1)}{2(\alpha +1)}}\\\sum _{1\leq j\leq n}{\frac {1}{1+x_{j}}}&={\frac {n(n+\alpha +\beta +1)}{2(\beta +1)}}\\\sum _{1\leq j\leq n}x_{j}&={\frac {n(\beta -\alpha )}{2n+\alpha +\beta }}\end{aligned}}} 
   
 
  
    
      
        
          
            
              1 
              + 
              α 
             
            2 
           
         
       
     
    {\displaystyle {\frac {1+\alpha }{2}}} 
   
 
  
    
      
        
          
            
              1 
              + 
              β 
             
            2 
           
         
       
     
    {\displaystyle {\frac {1+\beta }{2}}} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        + 
        1 
       
     
    {\displaystyle +1} 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}} 
   
 [ 15] 
Other relations, such as 
  
    
      
        
          ∑ 
          
            1 
            ≤ 
            j 
            ≤ 
            n 
            , 
            i 
            ≠ 
            j 
           
         
        
          
            1 
            
              ( 
              
                x 
                
                  i 
                 
               
              − 
              
                x 
                
                  j 
                 
               
              
                ) 
                
                  2 
                 
               
             
           
         
        , 
        
          ∑ 
          
            1 
            ≤ 
            j 
            ≤ 
            n 
            , 
            i 
            ≠ 
            j 
           
         
        
          
            1 
            
              ( 
              
                x 
                
                  i 
                 
               
              − 
              
                x 
                
                  j 
                 
               
              
                ) 
                
                  3 
                 
               
             
           
         
       
     
    {\displaystyle \sum _{1\leq j\leq n,i\neq j}{\frac {1}{(x_{i}-x_{j})^{2}}},\sum _{1\leq j\leq n,i\neq j}{\frac {1}{(x_{i}-x_{j})^{3}}}} 
   
 [ 14] 
As the zeroes specify the polynomial up to scaling, this provides an alternative way to uniquely characterize the Jacobi polynomials.
The electrostatic interpretation allows many relations to be intuitively seen. For example:
the symmetry relation between 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}} 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            β 
            , 
            α 
            ) 
           
         
       
     
    {\displaystyle P_{n}^{(\beta ,\alpha )}} 
   
  
the roots monotonically decrease when 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
  Since the Stieltjes relation also exists for the Hermite polynomials and the Laguerre polynomials, by taking an appropriate limit of 
  
    
      
        α 
        , 
        β 
       
     
    {\displaystyle \alpha ,\beta } 
   
 
  
    
      
        − 
        
          x 
          
            i 
           
         
        + 
        
          ∑ 
          
            1 
            ≤ 
            j 
            ≤ 
            n 
            , 
            i 
            ≠ 
            j 
           
         
        
          
            1 
            
              
                x 
                
                  i 
                 
               
              − 
              
                x 
                
                  j 
                 
               
             
           
         
        = 
        0 
       
     
    {\displaystyle -x_{i}+\sum _{1\leq j\leq n,i\neq j}{\frac {1}{x_{i}-x_{j}}}=0} 
   
 
  
    
      
        α 
        = 
        β 
        → 
        ∞ 
       
     
    {\displaystyle \alpha =\beta \to \infty } 
   
 
Asymptotics 
For 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        [ 
        − 
        1 
        , 
        1 
        ] 
       
     
    {\displaystyle [-1,1]} 
   
 
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 Darboux  formula[ 1] : VIII.2  
  
    
      
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        ( 
        cos 
         
        θ 
        ) 
        = 
        
          n 
          
            − 
            
              
                1 
                2 
               
             
           
         
        k 
        ( 
        θ 
        ) 
        cos 
         
        ( 
        N 
        θ 
        + 
        γ 
        ) 
        + 
        O 
        
          ( 
          
            n 
            
              − 
              
                
                  3 
                  2 
                 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle P_{n}^{(\alpha ,\beta )}(\cos \theta )=n^{-{\frac {1}{2}}}k(\theta )\cos(N\theta +\gamma )+O\left(n^{-{\frac {3}{2}}}\right),} 
   
 where
  
    
      
        
          
            
              
                k 
                ( 
                θ 
                ) 
               
              
                = 
                
                  π 
                  
                    − 
                    
                      
                        1 
                        2 
                       
                     
                   
                 
                
                  sin 
                  
                    − 
                    α 
                    − 
                    
                      
                        1 
                        2 
                       
                     
                   
                 
                 
                
                  
                    
                      θ 
                      2 
                     
                   
                 
                
                  cos 
                  
                    − 
                    β 
                    − 
                    
                      
                        1 
                        2 
                       
                     
                   
                 
                 
                
                  
                    
                      θ 
                      2 
                     
                   
                 
                , 
               
             
            
              
                N 
               
              
                = 
                n 
                + 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                α 
                + 
                β 
                + 
                1 
                ) 
                , 
               
             
            
              
                γ 
               
              
                = 
                − 
                
                  
                    
                      π 
                      2 
                     
                   
                 
                
                  ( 
                  
                    α 
                    + 
                    
                      
                        
                          1 
                          2 
                         
                       
                     
                   
                  ) 
                 
                , 
               
             
            
              
                0 
                < 
                θ 
               
              
                < 
                π 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}k(\theta )&=\pi ^{-{\frac {1}{2}}}\sin ^{-\alpha -{\frac {1}{2}}}{\tfrac {\theta }{2}}\cos ^{-\beta -{\frac {1}{2}}}{\tfrac {\theta }{2}},\\N&=n+{\tfrac {1}{2}}(\alpha +\beta +1),\\\gamma &=-{\tfrac {\pi }{2}}\left(\alpha +{\tfrac {1}{2}}\right),\\0<\theta &<\pi \end{aligned}}} 
   
 and the "
  
    
      
        O 
       
     
    {\displaystyle O} 
   
 
  
    
      
        [ 
        ε 
        , 
        π 
        − 
        ε 
        ] 
       
     
    {\displaystyle [\varepsilon ,\pi -\varepsilon ]} 
   
 
  
    
      
        ε 
        > 
        0 
       
     
    {\displaystyle \varepsilon >0} 
   
 
For higher orders, define:[ 12] 
  
    
      
        
          B 
         
       
     
    {\displaystyle \mathrm {B} } 
   
 Euler beta function 
  
    
      
        ( 
        ⋅ 
        
          ) 
          
            m 
           
         
       
     
    {\displaystyle (\cdot )_{m}} 
   
 falling factorial .
  
    
      
        
          f 
          
            m 
           
         
        ( 
        θ 
        ) 
        = 
        
          ∑ 
          
            ℓ 
            = 
            0 
           
          
            m 
           
         
        
          
            
              
                C 
                
                  m 
                  , 
                  ℓ 
                 
               
              ( 
              α 
              , 
              β 
              ) 
             
            
              ℓ 
              ! 
              ( 
              m 
              − 
              ℓ 
              ) 
              ! 
             
           
         
        
          
            
              cos 
               
              
                θ 
                
                  n 
                  , 
                  m 
                  , 
                  ℓ 
                 
               
             
            
              
                
                  ( 
                  
                    sin 
                     
                    
                      
                        1 
                        2 
                       
                     
                    θ 
                   
                  ) 
                 
                
                  ℓ 
                 
               
              
                
                  ( 
                  
                    cos 
                     
                    
                      
                        1 
                        2 
                       
                     
                    θ 
                   
                  ) 
                 
                
                  m 
                  − 
                  ℓ 
                 
               
             
           
         
       
     
    {\displaystyle f_{m}(\theta )=\sum _{\ell =0}^{m}{\frac {C_{m,\ell }(\alpha ,\beta )}{\ell !(m-\ell )!}}{\frac {\cos \theta _{n,m,\ell }}{\left(\sin {\frac {1}{2}}\theta \right)^{\ell }\left(\cos {\frac {1}{2}}\theta \right)^{m-\ell }}}} 
   
 
  
    
      
        
          C 
          
            m 
            , 
            ℓ 
           
         
        ( 
        α 
        , 
        β 
        ) 
        = 
        
          
            
              ( 
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                + 
                α 
               
              ) 
             
            
              ℓ 
             
           
         
        
          
            
              ( 
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                − 
                α 
               
              ) 
             
            
              ℓ 
             
           
         
        
          
            
              ( 
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                + 
                β 
               
              ) 
             
            
              m 
              − 
              ℓ 
             
           
         
        
          
            
              ( 
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                − 
                β 
               
              ) 
             
            
              m 
              − 
              ℓ 
             
           
         
       
     
    {\displaystyle C_{m,\ell }(\alpha ,\beta )={\left({\tfrac {1}{2}}+\alpha \right)_{\ell }}{\left({\tfrac {1}{2}}-\alpha \right)_{\ell }}{\left({\tfrac {1}{2}}+\beta \right)_{m-\ell }}{\left({\tfrac {1}{2}}-\beta \right)_{m-\ell }}} 
   
 
  
    
      
        
          θ 
          
            n 
            , 
            m 
            , 
            ℓ 
           
         
        = 
        
          
            
              1 
              2 
             
           
         
        ( 
        2 
        n 
        + 
        α 
        + 
        β 
        + 
        m 
        + 
        1 
        ) 
        θ 
        − 
        
          
            
              1 
              2 
             
           
         
        ( 
        α 
        + 
        ℓ 
        + 
        
          
            
              1 
              2 
             
           
         
        ) 
        π 
       
     
    {\displaystyle \theta _{n,m,\ell }={\tfrac {1}{2}}(2n+\alpha +\beta +m+1)\theta -{\tfrac {1}{2}}(\alpha +\ell +{\tfrac {1}{2}})\pi } 
   
 Fix real 
  
    
      
        α 
        , 
        β 
       
     
    {\displaystyle \alpha ,\beta } 
   
 
  
    
      
        M 
        = 
        1 
        , 
        2 
        , 
        … 
       
     
    {\displaystyle M=1,2,\dots } 
   
 
  
    
      
        δ 
        ∈ 
        ( 
        0 
        , 
        π 
        
          / 
         
        2 
        ) 
       
     
    {\displaystyle \delta \in (0,\pi /2)} 
   
 
  
    
      
        n 
        → 
        ∞ 
       
     
    {\displaystyle n\to \infty } 
   
 
  
    
      
        
          
            ( 
            
              sin 
               
              
                
                  
                    1 
                    2 
                   
                 
               
              θ 
             
            ) 
           
          
            α 
            + 
            
              
                1 
                2 
               
             
           
         
        
          
            ( 
            
              cos 
               
              
                
                  
                    1 
                    2 
                   
                 
               
              θ 
             
            ) 
           
          
            β 
            + 
            
              
                1 
                2 
               
             
           
         
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        
          ( 
          
            cos 
             
            θ 
           
          ) 
         
        = 
        
          
            π 
           
          
            − 
            1 
           
         
        
          2 
          
            2 
            n 
            + 
            α 
            + 
            β 
            + 
            1 
           
         
        
          B 
         
        
          ( 
          
            n 
            + 
            α 
            + 
            1 
            , 
            n 
            + 
            β 
            + 
            1 
           
          ) 
         
        
          ( 
          
            
              ∑ 
              
                m 
                = 
                0 
               
              
                M 
                − 
                1 
               
             
            
              
                
                  
                    f 
                    
                      m 
                     
                   
                  ( 
                  θ 
                  ) 
                 
                
                  
                    2 
                    
                      m 
                     
                   
                  
                    
                      
                        ( 
                        
                          2 
                          n 
                          + 
                          α 
                          + 
                          β 
                          + 
                          2 
                         
                        ) 
                       
                      
                        m 
                       
                     
                   
                 
               
             
            + 
            O 
            
              ( 
              
                n 
                
                  − 
                  M 
                 
               
              ) 
             
           
          ) 
         
       
     
    {\displaystyle \left(\sin {\tfrac {1}{2}}\theta \right)^{\alpha +{\frac {1}{2}}}\left(\cos {\tfrac {1}{2}}\theta \right)^{\beta +{\frac {1}{2}}}P_{n}^{(\alpha ,\beta )}\left(\cos \theta \right)={\pi }^{-1}2^{2n+\alpha +\beta +1}\mathrm {B} \left(n+\alpha +1,n+\beta +1\right)\left(\sum _{m=0}^{M-1}{\frac {f_{m}(\theta )}{2^{m}{\left(2n+\alpha +\beta +2\right)_{m}}}}+O\left(n^{-M}\right)\right)} 
   
 uniformly  for all 
  
    
      
        θ 
        ∈ 
        [ 
        δ 
        , 
        π 
        − 
        δ 
        ] 
       
     
    {\displaystyle \theta \in [\delta ,\pi -\delta ]} 
   
 
The 
  
    
      
        M 
        = 
        1 
       
     
    {\displaystyle M=1} 
   
 
Define:[ 12] 
  
    
      
        
          J 
          
            ν 
           
         
       
     
    {\displaystyle J_{\nu }} 
   
 Bessel function 
  
    
      
        ρ 
        = 
        n 
        + 
        
          
            
              1 
              2 
             
           
         
        ( 
        α 
        + 
        β 
        + 
        1 
        ) 
       
     
    {\displaystyle \rho =n+{\tfrac {1}{2}}(\alpha +\beta +1)} 
   
 
  
    
      
        g 
        ( 
        θ 
        ) 
        = 
        
          ( 
          
            
              
                
                  1 
                  4 
                 
               
             
            − 
            
              α 
              
                2 
               
             
           
          ) 
         
        
          ( 
          
            cot 
             
            
              ( 
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                θ 
               
              ) 
             
            − 
            
              
                ( 
                
                  
                    
                      
                        1 
                        2 
                       
                     
                   
                  θ 
                 
                ) 
               
              
                − 
                1 
               
             
           
          ) 
         
        − 
        
          ( 
          
            
              
                
                  1 
                  4 
                 
               
             
            − 
            
              β 
              
                2 
               
             
           
          ) 
         
        tan 
         
        
          ( 
          
            
              
                
                  1 
                  2 
                 
               
             
            θ 
           
          ) 
         
       
     
    {\displaystyle g(\theta )=\left({\tfrac {1}{4}}-\alpha ^{2}\right)\left(\cot \left({\tfrac {1}{2}}\theta \right)-\left({\tfrac {1}{2}}\theta \right)^{-1}\right)-\left({\tfrac {1}{4}}-\beta ^{2}\right)\tan \left({\tfrac {1}{2}}\theta \right)} 
   
 Fix real 
  
    
      
        α 
        , 
        β 
       
     
    {\displaystyle \alpha ,\beta } 
   
 
  
    
      
        M 
        = 
        0 
        , 
        1 
        , 
        2 
        , 
        … 
       
     
    {\displaystyle M=0,1,2,\dots } 
   
 
  
    
      
        n 
        → 
        ∞ 
       
     
    {\displaystyle n\to \infty } 
   
 Hilb's type formula :[ 16] 
  
    
      
        ( 
        sin 
         
        
          
            
              1 
              2 
             
           
         
        θ 
        
          ) 
          
            α 
            + 
            
              
                1 
                2 
               
             
           
         
        ( 
        cos 
         
        
          
            
              1 
              2 
             
           
         
        θ 
        
          ) 
          
            β 
            + 
            
              
                1 
                2 
               
             
           
         
        
          P 
          
            n 
           
          
            ( 
            α 
            , 
            β 
            ) 
           
         
        
          ( 
          
            cos 
             
            θ 
           
          ) 
         
        = 
        
          
            
              Γ 
              
                ( 
                
                  n 
                  + 
                  α 
                  + 
                  1 
                 
                ) 
               
             
            
              
                2 
                
                  
                    1 
                    2 
                   
                 
               
              
                ρ 
                
                  α 
                 
               
              n 
              ! 
             
           
         
        
          ( 
          
            
              θ 
              
                
                  1 
                  2 
                 
               
             
            
              J 
              
                α 
               
             
            
              ( 
              
                ρ 
                θ 
               
              ) 
             
            
              ∑ 
              
                m 
                = 
                0 
               
              
                M 
               
             
            
              
                
                  
                    
                      A 
                      
                        m 
                       
                     
                    ( 
                    θ 
                    ) 
                   
                  
                    ρ 
                    
                      2 
                      m 
                     
                   
                 
               
             
            + 
            
              θ 
              
                
                  3 
                  2 
                 
               
             
            
              J 
              
                α 
                + 
                1 
               
             
            
              ( 
              
                ρ 
                θ 
               
              ) 
             
            
              ∑ 
              
                m 
                = 
                0 
               
              
                M 
                − 
                1 
               
             
            
              
                
                  
                    
                      B 
                      
                        m 
                       
                     
                    ( 
                    θ 
                    ) 
                   
                  
                    ρ 
                    
                      2 
                      m 
                      + 
                      1 
                     
                   
                 
               
             
            + 
            
              ε 
              
                M 
               
             
            ( 
            ρ 
            , 
            θ 
            ) 
           
          ) 
         
       
     
    {\displaystyle (\sin {\tfrac {1}{2}}\theta )^{\alpha +{\frac {1}{2}}}(\cos {\tfrac {1}{2}}\theta )^{\beta +{\frac {1}{2}}}P_{n}^{(\alpha ,\beta )}\left(\cos \theta \right)={\frac {\Gamma \left(n+\alpha +1\right)}{2^{\frac {1}{2}}\rho ^{\alpha }n!}}\left(\theta ^{\frac {1}{2}}J_{\alpha }\left(\rho \theta \right)\sum _{m=0}^{M}{\dfrac {A_{m}(\theta )}{\rho ^{2m}}}+\theta ^{\frac {3}{2}}J_{\alpha +1}\left(\rho \theta \right)\sum _{m=0}^{M-1}{\dfrac {B_{m}(\theta )}{\rho ^{2m+1}}}+\varepsilon _{M}(\rho ,\theta )\right)} 
   
 
  
    
      
        
          A 
          
            m 
           
         
        , 
        
          B 
          
            m 
           
         
       
     
    {\displaystyle A_{m},B_{m}} 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        
          
            
              
                
                  A 
                  
                    0 
                   
                 
                ( 
                θ 
                ) 
               
              
                = 
                1 
               
             
            
              
                θ 
                
                  B 
                  
                    0 
                   
                 
                ( 
                θ 
                ) 
               
              
                = 
                
                  
                    1 
                    4 
                   
                 
                g 
                ( 
                θ 
                ) 
               
             
            
              
                
                  A 
                  
                    1 
                   
                 
                ( 
                θ 
                ) 
               
              
                = 
                
                  
                    1 
                    8 
                   
                 
                
                  g 
                  
                    ′ 
                   
                 
                ( 
                θ 
                ) 
                − 
                
                  
                    
                      1 
                      + 
                      2 
                      α 
                     
                    8 
                   
                 
                
                  
                    
                      g 
                      ( 
                      θ 
                      ) 
                     
                    θ 
                   
                 
                − 
                
                  
                    1 
                    32 
                   
                 
                ( 
                g 
                ( 
                θ 
                ) 
                
                  ) 
                  
                    2 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}A_{0}(\theta )&=1\\\theta B_{0}(\theta )&={\frac {1}{4}}g(\theta )\\A_{1}(\theta )&={\frac {1}{8}}g^{\prime }(\theta )-{\frac {1+2\alpha }{8}}{\frac {g(\theta )}{\theta }}-{\frac {1}{32}}(g(\theta ))^{2}\end{aligned}}} 
   
 
For any fixed arbitrary constant 
  
    
      
        c 
        > 
        0 
       
     
    {\displaystyle c>0} 
   
 
  
    
      
        
          ε 
          
            M 
           
         
        ( 
        ρ 
        , 
        θ 
        ) 
        = 
        
          
            { 
            
              
                
                  θ 
                  O 
                  
                    ( 
                    
                      ρ 
                      
                        − 
                        2 
                        M 
                        − 
                        ( 
                        3 
                        
                          / 
                         
                        2 
                        ) 
                       
                     
                    ) 
                   
                  , 
                 
                
                  c 
                  
                    ρ 
                    
                      − 
                      1 
                     
                   
                  ≤ 
                  θ 
                  ≤ 
                  π 
                  − 
                  δ 
                  , 
                 
               
              
                
                  
                    θ 
                    
                      α 
                      + 
                      ( 
                      5 
                      
                        / 
                       
                      2 
                      ) 
                     
                   
                  O 
                  
                    ( 
                    
                      ρ 
                      
                        − 
                        2 
                        M 
                        + 
                        α 
                       
                     
                    ) 
                   
                  , 
                 
                
                  0 
                  ≤ 
                  θ 
                  ≤ 
                  c 
                  
                    ρ 
                    
                      − 
                      1 
                     
                   
                  , 
                 
               
             
             
         
       
     
    {\displaystyle \varepsilon _{M}(\rho ,\theta )={\begin{cases}\theta O\left(\rho ^{-2M-(3/2)}\right),&c\rho ^{-1}\leq \theta \leq \pi -\delta ,\\\theta ^{\alpha +(5/2)}O\left(\rho ^{-2M+\alpha }\right),&0\leq \theta \leq c\rho ^{-1},\end{cases}}} 
   
 
The asymptotics of the Jacobi polynomials near the points 
  
    
      
        ± 
        1 
       
     
    {\displaystyle \pm 1} 
   
 Mehler–Heine formula 
  
    
      
        
          
            
              
                
                  lim 
                  
                    n 
                    → 
                    ∞ 
                   
                 
                
                  n 
                  
                    − 
                    α 
                   
                 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                
                  ( 
                  
                    cos 
                     
                    
                      ( 
                      
                        
                          
                            z 
                            n 
                           
                         
                       
                      ) 
                     
                   
                  ) 
                 
               
              
                = 
                
                  
                    ( 
                    
                      
                        
                          z 
                          2 
                         
                       
                     
                    ) 
                   
                  
                    − 
                    α 
                   
                 
                
                  J 
                  
                    α 
                   
                 
                ( 
                z 
                ) 
               
             
            
              
                
                  lim 
                  
                    n 
                    → 
                    ∞ 
                   
                 
                
                  n 
                  
                    − 
                    β 
                   
                 
                
                  P 
                  
                    n 
                   
                  
                    ( 
                    α 
                    , 
                    β 
                    ) 
                   
                 
                
                  ( 
                  
                    cos 
                     
                    
                      ( 
                      
                        π 
                        − 
                        
                          
                            
                              z 
                              n 
                             
                           
                         
                       
                      ) 
                     
                   
                  ) 
                 
               
              
                = 
                
                  
                    ( 
                    
                      
                        
                          z 
                          2 
                         
                       
                     
                    ) 
                   
                  
                    − 
                    β 
                   
                 
                
                  J 
                  
                    β 
                   
                 
                ( 
                z 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\lim _{n\to \infty }n^{-\alpha }P_{n}^{(\alpha ,\beta )}\left(\cos \left({\tfrac {z}{n}}\right)\right)&=\left({\tfrac {z}{2}}\right)^{-\alpha }J_{\alpha }(z)\\\lim _{n\to \infty }n^{-\beta }P_{n}^{(\alpha ,\beta )}\left(\cos \left(\pi -{\tfrac {z}{n}}\right)\right)&=\left({\tfrac {z}{2}}\right)^{-\beta }J_{\beta }(z)\end{aligned}}} 
   
 where the limits are uniform for 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 domain .
The asymptotics outside 
  
    
      
        [ 
        − 
        1 
        , 
        1 
        ] 
       
     
    {\displaystyle [-1,1]} 
   
 
Applications 
Wigner d-matrix 
The expression (1 Wigner d-matrix  
  
    
      
        
          d 
          
            
              m 
              ′ 
             
            , 
            m 
           
          
            j 
           
         
        ( 
        ϕ 
        ) 
       
     
    {\displaystyle d_{m',m}^{j}(\phi )} 
   
 
  
    
      
        0 
        ≤ 
        ϕ 
        ≤ 
        4 
        π 
       
     
    {\displaystyle 0\leq \phi \leq 4\pi } 
   
 [ 17] 
  
    
      
        
          d 
          
            
              m 
              ′ 
             
            m 
           
          
            j 
           
         
        ( 
        ϕ 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            
              
                m 
                − 
                
                  m 
                  ′ 
                 
                − 
                
                  | 
                 
                m 
                − 
                
                  m 
                  ′ 
                 
                
                  | 
                 
               
              2 
             
           
         
        
          
            [ 
            
              
                
                  ( 
                  j 
                  + 
                  M 
                  ) 
                  ! 
                  ( 
                  j 
                  − 
                  M 
                  ) 
                  ! 
                 
                
                  ( 
                  j 
                  + 
                  N 
                  ) 
                  ! 
                  ( 
                  j 
                  − 
                  N 
                  ) 
                  ! 
                 
               
             
            ] 
           
          
            
              1 
              2 
             
           
         
        
          
            ( 
            
              sin 
               
              
                
                  
                    ϕ 
                    2 
                   
                 
               
             
            ) 
           
          
            
              | 
             
            m 
            − 
            
              m 
              ′ 
             
            
              | 
             
           
         
        
          
            ( 
            
              cos 
               
              
                
                  
                    ϕ 
                    2 
                   
                 
               
             
            ) 
           
          
            
              | 
             
            m 
            + 
            
              m 
              ′ 
             
            
              | 
             
           
         
        
          P 
          
            j 
            − 
            M 
           
          
            ( 
            
              | 
             
            m 
            − 
            
              m 
              ′ 
             
            
              | 
             
            , 
            
              | 
             
            m 
            + 
            
              m 
              ′ 
             
            
              | 
             
            ) 
           
         
        ( 
        cos 
         
        ϕ 
        ) 
        , 
       
     
    {\displaystyle d_{m'm}^{j}(\phi )=(-1)^{\frac {m-m'-|m-m'|}{2}}\left[{\frac {(j+M)!(j-M)!}{(j+N)!(j-N)!}}\right]^{\frac {1}{2}}\left(\sin {\tfrac {\phi }{2}}\right)^{|m-m'|}\left(\cos {\tfrac {\phi }{2}}\right)^{|m+m'|}P_{j-M}^{(|m-m'|,|m+m'|)}(\cos \phi ),} 
   
 
where 
  
    
      
        M 
        = 
        max 
        ( 
        
          | 
         
        m 
        
          | 
         
        , 
        
          | 
         
        
          m 
          ′ 
         
        
          | 
         
        ) 
        , 
        N 
        = 
        min 
        ( 
        
          | 
         
        m 
        
          | 
         
        , 
        
          | 
         
        
          m 
          ′ 
         
        
          | 
         
        ) 
       
     
    {\displaystyle M=\max(|m|,|m'|),N=\min(|m|,|m'|)} 
   
 
See also 
References 
^ a b c d e f g   (Szegő 1975 , 4. Jacobi polynomials) 
^ Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 22" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables ISBN  978-0-486-61272-0 . LCCN  64-60036 . MR  0167642 . LCCN  65-12253 .^ P.K. Suetin (2001) [1994], "Jacobi polynomials" , Encyclopedia of Mathematics EMS Press  ^ Creasey, P. E. "A Unitary BRDF for Surfaces with Gaussian Deviations" . GitHub  ^ "DLMF: §18.7 Interrelations and Limit Relations ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" . dlmf.nist.gov .^ Wong, E. (1964). "The construction of a class of stationary Markoff processes"  (PDF) . In Bellman, R. (ed.). Stochastic Processes in Mathematical Physics and Engineering . Providence, RI: American Mathematical Society. pp. 264– 276. ^ Demni, N.; Zani, M. (2009-02-01). "Large deviations for statistics of the Jacobi process" . Stochastic Processes and Their Applications . 119  (2): 518– 533. doi :10.1016/j.spa.2008.02.015 . ISSN  0304-4149 . ^ a b   Nowak, Adam; Sjögren, Peter (2011). "Sharp estimates of the Jacobi heat kernel". arXiv :1111.3145 math.CA ]. ^ "DLMF: §18.16 Zeros ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" . dlmf.nist.gov .^ Bailey, W. N. (1938). "The Generating Function of Jacobi Polynomials" . Journal of the London Mathematical Society . s1-13 (1): 8– 12. doi :10.1112/jlms/s1-13.1.8 . ISSN  1469-7750 . ^ Dijksma, A.; Koornwinder, T. H. (1971-01-01). "Spherical harmonics and the product of two Jacobi polynomials" . Indagationes Mathematicae (Proceedings) . 74 : 191– 196. doi :10.1016/S1385-7258(71)80026-4 . ISSN  1385-7258 . ^ a b c d e f   "DLMF: §18.15 Asymptotic Approximations ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" . dlmf.nist.gov .^ (Szegő 1975 , Section 6.21. Inequalities for the zeros of the classical polynomials) 
^ a b   Marcellán, F.; Martínez-Finkelshtein, A.; Martínez-González, P. (2007-10-15). "Electrostatic models for zeros of polynomials: Old, new, and some open problems" . Journal of Computational and Applied Mathematics . Proceedings of The Conference in Honour of Dr. Nico Temme on the Occasion of his 65th birthday. 207  (2): 258– 272. doi :10.1016/j.cam.2006.10.020 . ISSN  0377-0427 . ^ a b   (Szegő 1975 , Section 6.7. Electrostatic interpretation of the zeros of the classical polynomials) 
^ (Szegő 1975 , 8.21. Asymptotic formulas for Legendre and Jacobi polynomials) 
^ Biedenharn, L.C.; Louck, J.D. (1981). Angular Momentum in Quantum Physics . Reading: Addison-Wesley.   
Szegő, Gábor  (1975) [1939]. Orthogonal Polynomials . Colloquium Publications. Vol. 23 (4th ed.). American Mathematical Society. ISBN  978-0-8218-1023-1 .
Further reading 
Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions , Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press , ISBN  978-0-521-62321-6 , MR  1688958 , ISBN  978-0-521-78988-2  Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions ISBN  978-0-521-19225-5 , MR  2723248  
External links 
 
Authority control databases 
International National Other