"Hyperbolic curve" redirects here. For the geometric curve, see 
Hyperbola .
In mathematics , hyperbolic functions  are analogues of the ordinary trigonometric functions , but defined using the hyperbola  rather than the circle . Just as the points (cos t , sin t )  form a circle with a unit radius , the points (cosh t , sinh t )  form the right half of the unit hyperbola . Also, similarly to how the derivatives of sin(t )  and cos(t )  are cos(t )  and –sin(t )  respectively, the derivatives of sinh(t )  and cosh(t )  are cosh(t )  and sinh(t )  respectively.
Hyperbolic functions are used to express the angle of parallelism  in hyperbolic geometry . They are used to express Lorentz boosts  as hyperbolic rotations  in special relativity . They also occur in the solutions of many linear differential equations  (such as the equation defining a catenary ), cubic equations , and Laplace's equation  in Cartesian coordinates . Laplace's equations  are important in many areas of physics , including electromagnetic theory , heat transfer , and fluid dynamics .
The basic hyperbolic functions are:[ 1] 
hyperbolic sine  "sinh " (),[ 2] hyperbolic cosine  "cosh " (),[ 3] from which are derived:[ 4] 
hyperbolic tangent  "tanh " (),[ 5] hyperbolic cotangent  "coth " (),[ 6] [ 7] hyperbolic secant  "sech " (),[ 8] hyperbolic cosecant  "csch " or "cosech " ([ 3] corresponding to the derived trigonometric functions.
The inverse hyperbolic functions  are:
inverse hyperbolic sine  "arsinh " (also denoted "sinh−1  ", "asinh " or sometimes "arcsinh ")[ 9] [ 10] [ 11] inverse hyperbolic cosine  "arcosh " (also denoted "cosh−1  ", "acosh " or sometimes "arccosh ")inverse hyperbolic tangent  "artanh " (also denoted "tanh−1  ", "atanh " or sometimes "arctanh ")inverse hyperbolic cotangent  "arcoth " (also denoted "coth−1  ", "acoth " or sometimes "arccoth ")inverse hyperbolic secant  "arsech " (also denoted "sech−1  ", "asech " or sometimes "arcsech ")inverse hyperbolic cosecant  "arcsch " (also denoted "arcosech ", "csch−1  ", "cosech−1  ","acsch ", "acosech ", or sometimes "arccsch " or "arccosech ")A ray  through the unit hyperbola  x 2  − y 2  = 1(cosh a , sinh a ) , where a  is twice the area between the ray, the hyperbola, and the x -axis. For points on the hyperbola below the x -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions). The hyperbolic functions take a real  argument  called a hyperbolic angle . The magnitude of a hyperbolic angle is the area  of its hyperbolic sector  to xy  = 1. The hyperbolic functions may be defined in terms of the legs of a right triangle  covering this sector.
In complex analysis , the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions . As a result, the other hyperbolic functions are meromorphic  in the whole complex plane.
By Lindemann–Weierstrass theorem , the hyperbolic functions have a transcendental value  for every non-zero algebraic value  of the argument.[ 12] 
History 
The first known calculation of a hyperbolic trigonometry problem is attributed to Gerardus Mercator  when issuing the Mercator map projection  circa 1566. It requires tabulating solutions to a transcendental equation  involving hyperbolic functions.[ 13] 
The first to suggest a similarity between the sector of the circle and that of the hyperbola was Isaac Newton  in his 1687 Principia Mathematica [ 14] 
Roger Cotes  suggested to modify the trigonometric functions using the imaginary unit  
  
    
      
        i 
        = 
        
          
            − 
            1 
           
         
       
     
    {\displaystyle i={\sqrt {-1}}} 
   
 spheroid  from a prolate one.[ 14] 
Hyperbolic functions were formally introduced in 1757 by Vincenzo Riccati .[ 14] [ 13] [ 15] Sc. Cc. sinus/cosinus circulare Sh. Ch. sinus/cosinus hyperbolico [ 14] Daviet de Foncenex  showed the interchangeability of the trigonometric and hyperbolic functions using the imaginary unit and extended de Moivre's formula  to hyperbolic functions.[ 15] [ 14] 
During the 1760s, Johann Heinrich Lambert  systematized the use functions and provided exponential expressions in various publications.[ 14] [ 15] [ 15] [ 16] 
Notation 
Definitions 
Right triangles with legs proportional to sinh and cosh With hyperbolic angle  u , the hyperbolic functions sinh and cosh can defined with the exponential function  eu .[ 1] [ 4] 
  
    
      
        A 
        = 
        ( 
        
          e 
          
            − 
            u 
           
         
        , 
        
          e 
          
            u 
           
         
        ) 
        , 
          
        B 
        = 
        ( 
        
          e 
          
            u 
           
         
        , 
          
        
          e 
          
            − 
            u 
           
         
        ) 
        , 
          
        O 
        A 
        + 
        O 
        B 
        = 
        O 
        C 
       
     
    {\displaystyle A=(e^{-u},e^{u}),\ B=(e^{u},\ e^{-u}),\ OA+OB=OC} 
   
 
Exponential definitions 
sinh x   is half the difference  of ex  e −x  cosh x   is the average  of ex  e −x  Hyperbolic sine: the odd part  of the exponential function, that is, 
  
    
      
        sinh 
         
        x 
        = 
        
          
            
              
                e 
                
                  x 
                 
               
              − 
              
                e 
                
                  − 
                  x 
                 
               
             
            2 
           
         
        = 
        
          
            
              
                e 
                
                  2 
                  x 
                 
               
              − 
              1 
             
            
              2 
              
                e 
                
                  x 
                 
               
             
           
         
        = 
        
          
            
              1 
              − 
              
                e 
                
                  − 
                  2 
                  x 
                 
               
             
            
              2 
              
                e 
                
                  − 
                  x 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}={\frac {1-e^{-2x}}{2e^{-x}}}.} 
   
  
Hyperbolic cosine: the even part  of the exponential function, that is, 
  
    
      
        cosh 
         
        x 
        = 
        
          
            
              
                e 
                
                  x 
                 
               
              + 
              
                e 
                
                  − 
                  x 
                 
               
             
            2 
           
         
        = 
        
          
            
              
                e 
                
                  2 
                  x 
                 
               
              + 
              1 
             
            
              2 
              
                e 
                
                  x 
                 
               
             
           
         
        = 
        
          
            
              1 
              + 
              
                e 
                
                  − 
                  2 
                  x 
                 
               
             
            
              2 
              
                e 
                
                  − 
                  x 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}={\frac {1+e^{-2x}}{2e^{-x}}}.} 
   
  sinh , cosh  and tanh csch , sech  and coth Hyperbolic tangent: 
  
    
      
        tanh 
         
        x 
        = 
        
          
            
              sinh 
               
              x 
             
            
              cosh 
               
              x 
             
           
         
        = 
        
          
            
              
                e 
                
                  x 
                 
               
              − 
              
                e 
                
                  − 
                  x 
                 
               
             
            
              
                e 
                
                  x 
                 
               
              + 
              
                e 
                
                  − 
                  x 
                 
               
             
           
         
        = 
        
          
            
              
                e 
                
                  2 
                  x 
                 
               
              − 
              1 
             
            
              
                e 
                
                  2 
                  x 
                 
               
              + 
              1 
             
           
         
        . 
       
     
    {\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}.} 
   
  
Hyperbolic cotangent: for x  ≠ 0
  
    
      
        coth 
         
        x 
        = 
        
          
            
              cosh 
               
              x 
             
            
              sinh 
               
              x 
             
           
         
        = 
        
          
            
              
                e 
                
                  x 
                 
               
              + 
              
                e 
                
                  − 
                  x 
                 
               
             
            
              
                e 
                
                  x 
                 
               
              − 
              
                e 
                
                  − 
                  x 
                 
               
             
           
         
        = 
        
          
            
              
                e 
                
                  2 
                  x 
                 
               
              + 
              1 
             
            
              
                e 
                
                  2 
                  x 
                 
               
              − 
              1 
             
           
         
        . 
       
     
    {\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}.} 
   
  
Hyperbolic secant: 
  
    
      
        sech 
         
        x 
        = 
        
          
            1 
            
              cosh 
               
              x 
             
           
         
        = 
        
          
            2 
            
              
                e 
                
                  x 
                 
               
              + 
              
                e 
                
                  − 
                  x 
                 
               
             
           
         
        = 
        
          
            
              2 
              
                e 
                
                  x 
                 
               
             
            
              
                e 
                
                  2 
                  x 
                 
               
              + 
              1 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {sech} x={\frac {1}{\cosh x}}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}.} 
   
  
Hyperbolic cosecant: for x  ≠ 0
  
    
      
        csch 
         
        x 
        = 
        
          
            1 
            
              sinh 
               
              x 
             
           
         
        = 
        
          
            2 
            
              
                e 
                
                  x 
                 
               
              − 
              
                e 
                
                  − 
                  x 
                 
               
             
           
         
        = 
        
          
            
              2 
              
                e 
                
                  x 
                 
               
             
            
              
                e 
                
                  2 
                  x 
                 
               
              − 
              1 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {csch} x={\frac {1}{\sinh x}}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}.} 
   
  
Differential equation definitions 
The hyperbolic functions may be defined as solutions of differential equations : The hyperbolic sine and cosine are the solution (s , c )  of the system
  
    
      
        
          
            
              
                
                  c 
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                s 
                ( 
                x 
                ) 
                , 
               
             
            
              
                
                  s 
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                c 
                ( 
                x 
                ) 
                , 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}c'(x)&=s(x),\\s'(x)&=c(x),\\\end{aligned}}} 
   
 
  
    
      
        s 
        ( 
        0 
        ) 
        = 
        0 
        , 
        c 
        ( 
        0 
        ) 
        = 
        1. 
       
     
    {\displaystyle s(0)=0,c(0)=1.} 
   
 
  
    
      
        ( 
        a 
        
          e 
          
            x 
           
         
        + 
        b 
        
          e 
          
            − 
            x 
           
         
        , 
        a 
        
          e 
          
            x 
           
         
        − 
        b 
        
          e 
          
            − 
            x 
           
         
        ) 
       
     
    {\displaystyle (ae^{x}+be^{-x},ae^{x}-be^{-x})} 
   
 
sinh(x )  and cosh(x )  are also the unique solution of the equation f  ″(x ) = f  (x )f  (0) = 1f  ′(0) = 0f  (0) = 0f  ′(0) = 1
Complex trigonometric definitions 
Hyperbolic functions may also be deduced from trigonometric functions  with complex  arguments:
Hyperbolic sine:[ 1] 
  
    
      
        sinh 
         
        x 
        = 
        − 
        i 
        sin 
         
        ( 
        i 
        x 
        ) 
        . 
       
     
    {\displaystyle \sinh x=-i\sin(ix).} 
   
  
Hyperbolic cosine:[ 1] 
  
    
      
        cosh 
         
        x 
        = 
        cos 
         
        ( 
        i 
        x 
        ) 
        . 
       
     
    {\displaystyle \cosh x=\cos(ix).} 
   
  
Hyperbolic tangent: 
  
    
      
        tanh 
         
        x 
        = 
        − 
        i 
        tan 
         
        ( 
        i 
        x 
        ) 
        . 
       
     
    {\displaystyle \tanh x=-i\tan(ix).} 
   
  
Hyperbolic cotangent: 
  
    
      
        coth 
         
        x 
        = 
        i 
        cot 
         
        ( 
        i 
        x 
        ) 
        . 
       
     
    {\displaystyle \coth x=i\cot(ix).} 
   
  
Hyperbolic secant: 
  
    
      
        sech 
         
        x 
        = 
        sec 
         
        ( 
        i 
        x 
        ) 
        . 
       
     
    {\displaystyle \operatorname {sech} x=\sec(ix).} 
   
  
Hyperbolic cosecant:
  
    
      
        csch 
         
        x 
        = 
        i 
        csc 
         
        ( 
        i 
        x 
        ) 
        . 
       
     
    {\displaystyle \operatorname {csch} x=i\csc(ix).} 
   
  where i  is the imaginary unit  with i 2  = −1
The above definitions are related to the exponential definitions via Euler's formula  (See § Hyperbolic functions for complex numbers  below).
Characterizing properties 
Hyperbolic cosine 
It can be shown that the area under the curve  of the hyperbolic cosine (over a finite interval) is always equal to the arc length  corresponding to that interval:[ 17] 
  
    
      
        
          area 
         
        = 
        
          ∫ 
          
            a 
           
          
            b 
           
         
        cosh 
         
        x 
        d 
        x 
        = 
        
          ∫ 
          
            a 
           
          
            b 
           
         
        
          
            1 
            + 
            
              
                ( 
                
                  
                    
                      d 
                      
                        d 
                        x 
                       
                     
                   
                  cosh 
                   
                  x 
                 
                ) 
               
              
                2 
               
             
           
         
        d 
        x 
        = 
        
          arc length. 
         
       
     
    {\displaystyle {\text{area}}=\int _{a}^{b}\cosh x\,dx=\int _{a}^{b}{\sqrt {1+\left({\frac {d}{dx}}\cosh x\right)^{2}}}\,dx={\text{arc length.}}} 
   
 
Hyperbolic tangent 
The hyperbolic tangent is the (unique) solution to the differential equation  f  ′ = 1 − f  2 f  (0) = 0[ 18] [ 19] 
Useful relations 
trigonometric identities . In fact, Osborn's rule [ 20] 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        2 
        θ 
       
     
    {\displaystyle 2\theta } 
   
 
  
    
      
        3 
        θ 
       
     
    {\displaystyle 3\theta } 
   
 
  
    
      
        θ 
       
     
    {\displaystyle \theta } 
   
 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 
expanding it completely in terms of integral powers of sines and cosines, 
changing sine to sinh and cosine to cosh, and 
switching the sign of every term containing a product of two sinhs. Odd and even functions:
  
    
      
        
          
            
              
                sinh 
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                − 
                sinh 
                 
                x 
               
             
            
              
                cosh 
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                cosh 
                 
                x 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sinh(-x)&=-\sinh x\\\cosh(-x)&=\cosh x\end{aligned}}} 
   
 
Hence:
  
    
      
        
          
            
              
                tanh 
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                − 
                tanh 
                 
                x 
               
             
            
              
                coth 
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                − 
                coth 
                 
                x 
               
             
            
              
                sech 
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                sech 
                 
                x 
               
             
            
              
                csch 
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                − 
                csch 
                 
                x 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tanh(-x)&=-\tanh x\\\coth(-x)&=-\coth x\\\operatorname {sech} (-x)&=\operatorname {sech} x\\\operatorname {csch} (-x)&=-\operatorname {csch} x\end{aligned}}} 
   
 
Thus, cosh x   and sech x   are even functions ; the others are odd functions .
  
    
      
        
          
            
              
                arsech 
                 
                x 
               
              
                = 
                arcosh 
                 
                
                  ( 
                  
                    
                      1 
                      x 
                     
                   
                  ) 
                 
               
             
            
              
                arcsch 
                 
                x 
               
              
                = 
                arsinh 
                 
                
                  ( 
                  
                    
                      1 
                      x 
                     
                   
                  ) 
                 
               
             
            
              
                arcoth 
                 
                x 
               
              
                = 
                artanh 
                 
                
                  ( 
                  
                    
                      1 
                      x 
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {arsech} x&=\operatorname {arcosh} \left({\frac {1}{x}}\right)\\\operatorname {arcsch} x&=\operatorname {arsinh} \left({\frac {1}{x}}\right)\\\operatorname {arcoth} x&=\operatorname {artanh} \left({\frac {1}{x}}\right)\end{aligned}}} 
   
 
Hyperbolic sine and cosine satisfy:
  
    
      
        
          
            
              
                cosh 
                 
                x 
                + 
                sinh 
                 
                x 
               
              
                = 
                
                  e 
                  
                    x 
                   
                 
               
             
            
              
                cosh 
                 
                x 
                − 
                sinh 
                 
                x 
               
              
                = 
                
                  e 
                  
                    − 
                    x 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cosh x+\sinh x&=e^{x}\\\cosh x-\sinh x&=e^{-x}\end{aligned}}} 
   
 
which are analogous to Euler's formula , and
  
    
      
        
          cosh 
          
            2 
           
         
         
        x 
        − 
        
          sinh 
          
            2 
           
         
         
        x 
        = 
        1 
       
     
    {\displaystyle \cosh ^{2}x-\sinh ^{2}x=1} 
   
 
which is analogous to the Pythagorean trigonometric identity .
One also has
  
    
      
        
          
            
              
                
                  sech 
                  
                    2 
                   
                 
                 
                x 
               
              
                = 
                1 
                − 
                
                  tanh 
                  
                    2 
                   
                 
                 
                x 
               
             
            
              
                
                  csch 
                  
                    2 
                   
                 
                 
                x 
               
              
                = 
                
                  coth 
                  
                    2 
                   
                 
                 
                x 
                − 
                1 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {sech} ^{2}x&=1-\tanh ^{2}x\\\operatorname {csch} ^{2}x&=\coth ^{2}x-1\end{aligned}}} 
   
 
for the other functions.
Sums of arguments 
  
    
      
        
          
            
              
                sinh 
                 
                ( 
                x 
                + 
                y 
                ) 
               
              
                = 
                sinh 
                 
                x 
                cosh 
                 
                y 
                + 
                cosh 
                 
                x 
                sinh 
                 
                y 
               
             
            
              
                cosh 
                 
                ( 
                x 
                + 
                y 
                ) 
               
              
                = 
                cosh 
                 
                x 
                cosh 
                 
                y 
                + 
                sinh 
                 
                x 
                sinh 
                 
                y 
               
             
            
              
                tanh 
                 
                ( 
                x 
                + 
                y 
                ) 
               
              
                = 
                
                  
                    
                      tanh 
                       
                      x 
                      + 
                      tanh 
                       
                      y 
                     
                    
                      1 
                      + 
                      tanh 
                       
                      x 
                      tanh 
                       
                      y 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sinh(x+y)&=\sinh x\cosh y+\cosh x\sinh y\\\cosh(x+y)&=\cosh x\cosh y+\sinh x\sinh y\\\tanh(x+y)&={\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}\\\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                cosh 
                 
                ( 
                2 
                x 
                ) 
               
              
                = 
                
                  sinh 
                  
                    2 
                   
                 
                 
                
                  x 
                 
                + 
                
                  cosh 
                  
                    2 
                   
                 
                 
                
                  x 
                 
                = 
                2 
                
                  sinh 
                  
                    2 
                   
                 
                 
                x 
                + 
                1 
                = 
                2 
                
                  cosh 
                  
                    2 
                   
                 
                 
                x 
                − 
                1 
               
             
            
              
                sinh 
                 
                ( 
                2 
                x 
                ) 
               
              
                = 
                2 
                sinh 
                 
                x 
                cosh 
                 
                x 
               
             
            
              
                tanh 
                 
                ( 
                2 
                x 
                ) 
               
              
                = 
                
                  
                    
                      2 
                      tanh 
                       
                      x 
                     
                    
                      1 
                      + 
                      
                        tanh 
                        
                          2 
                         
                       
                       
                      x 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cosh(2x)&=\sinh ^{2}{x}+\cosh ^{2}{x}=2\sinh ^{2}x+1=2\cosh ^{2}x-1\\\sinh(2x)&=2\sinh x\cosh x\\\tanh(2x)&={\frac {2\tanh x}{1+\tanh ^{2}x}}\\\end{aligned}}} 
   
 
Also:
  
    
      
        
          
            
              
                sinh 
                 
                x 
                + 
                sinh 
                 
                y 
               
              
                = 
                2 
                sinh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        + 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
                cosh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
               
             
            
              
                cosh 
                 
                x 
                + 
                cosh 
                 
                y 
               
              
                = 
                2 
                cosh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        + 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
                cosh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sinh x+\sinh y&=2\sinh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\cosh x+\cosh y&=2\cosh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                sinh 
                 
                ( 
                x 
                − 
                y 
                ) 
               
              
                = 
                sinh 
                 
                x 
                cosh 
                 
                y 
                − 
                cosh 
                 
                x 
                sinh 
                 
                y 
               
             
            
              
                cosh 
                 
                ( 
                x 
                − 
                y 
                ) 
               
              
                = 
                cosh 
                 
                x 
                cosh 
                 
                y 
                − 
                sinh 
                 
                x 
                sinh 
                 
                y 
               
             
            
              
                tanh 
                 
                ( 
                x 
                − 
                y 
                ) 
               
              
                = 
                
                  
                    
                      tanh 
                       
                      x 
                      − 
                      tanh 
                       
                      y 
                     
                    
                      1 
                      − 
                      tanh 
                       
                      x 
                      tanh 
                       
                      y 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sinh(x-y)&=\sinh x\cosh y-\cosh x\sinh y\\\cosh(x-y)&=\cosh x\cosh y-\sinh x\sinh y\\\tanh(x-y)&={\frac {\tanh x-\tanh y}{1-\tanh x\tanh y}}\\\end{aligned}}} 
   
 
Also:[ 21] 
  
    
      
        
          
            
              
                sinh 
                 
                x 
                − 
                sinh 
                 
                y 
               
              
                = 
                2 
                cosh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        + 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
                sinh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
               
             
            
              
                cosh 
                 
                x 
                − 
                cosh 
                 
                y 
               
              
                = 
                2 
                sinh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        + 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
                sinh 
                 
                
                  ( 
                  
                    
                      
                        x 
                        − 
                        y 
                       
                      2 
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sinh x-\sinh y&=2\cosh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\cosh x-\cosh y&=2\sinh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                sinh 
                 
                
                  ( 
                  
                    
                      x 
                      2 
                     
                   
                  ) 
                 
               
              
                = 
                
                  
                    
                      sinh 
                       
                      x 
                     
                    
                      2 
                      ( 
                      cosh 
                       
                      x 
                      + 
                      1 
                      ) 
                     
                   
                 
               
              
                = 
                sgn 
                 
                x 
                
                  
                    
                      
                        cosh 
                         
                        x 
                        − 
                        1 
                       
                      2 
                     
                   
                 
               
             
            
              
                cosh 
                 
                
                  ( 
                  
                    
                      x 
                      2 
                     
                   
                  ) 
                 
               
              
                = 
                
                  
                    
                      
                        cosh 
                         
                        x 
                        + 
                        1 
                       
                      2 
                     
                   
                 
               
             
            
              
                tanh 
                 
                
                  ( 
                  
                    
                      x 
                      2 
                     
                   
                  ) 
                 
               
              
                = 
                
                  
                    
                      sinh 
                       
                      x 
                     
                    
                      cosh 
                       
                      x 
                      + 
                      1 
                     
                   
                 
               
              
                = 
                sgn 
                 
                x 
                
                  
                    
                      
                        cosh 
                         
                        x 
                        − 
                        1 
                       
                      
                        cosh 
                         
                        x 
                        + 
                        1 
                       
                     
                   
                 
                = 
                
                  
                    
                      
                        e 
                        
                          x 
                         
                       
                      − 
                      1 
                     
                    
                      
                        e 
                        
                          x 
                         
                       
                      + 
                      1 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sinh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\sqrt {2(\cosh x+1)}}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{2}}}\\[6px]\cosh \left({\frac {x}{2}}\right)&={\sqrt {\frac {\cosh x+1}{2}}}\\[6px]\tanh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\cosh x+1}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{\cosh x+1}}}={\frac {e^{x}-1}{e^{x}+1}}\end{aligned}}} 
   
 
where sgn  is the sign function .
If x  ≠ 0[ 22] 
  
    
      
        tanh 
         
        
          ( 
          
            
              x 
              2 
             
           
          ) 
         
        = 
        
          
            
              cosh 
               
              x 
              − 
              1 
             
            
              sinh 
               
              x 
             
           
         
        = 
        coth 
         
        x 
        − 
        csch 
         
        x 
       
     
    {\displaystyle \tanh \left({\frac {x}{2}}\right)={\frac {\cosh x-1}{\sinh x}}=\coth x-\operatorname {csch} x} 
   
 
  
    
      
        
          
            
              
                
                  sinh 
                  
                    2 
                   
                 
                 
                x 
               
              
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                cosh 
                 
                2 
                x 
                − 
                1 
                ) 
               
             
            
              
                
                  cosh 
                  
                    2 
                   
                 
                 
                x 
               
              
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ( 
                cosh 
                 
                2 
                x 
                + 
                1 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\sinh ^{2}x&={\tfrac {1}{2}}(\cosh 2x-1)\\\cosh ^{2}x&={\tfrac {1}{2}}(\cosh 2x+1)\end{aligned}}} 
   
 
Inequalities 
The following inequality is useful in statistics:[ 23] 
  
    
      
        cosh 
         
        ( 
        t 
        ) 
        ≤ 
        
          e 
          
            
              t 
              
                2 
               
             
            
              / 
             
            2 
           
         
        . 
       
     
    {\displaystyle \operatorname {cosh} (t)\leq e^{t^{2}/2}.} 
   
 
It can be proved by comparing the Taylor series of the two functions term by term.
Inverse functions as logarithms 
  
    
      
        
          
            
              
                arsinh 
                 
                ( 
                x 
                ) 
               
              
                = 
                ln 
                 
                
                  ( 
                  
                    x 
                    + 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        + 
                        1 
                       
                     
                   
                  ) 
                 
               
             
            
              
                arcosh 
                 
                ( 
                x 
                ) 
               
              
                = 
                ln 
                 
                
                  ( 
                  
                    x 
                    + 
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                        − 
                        1 
                       
                     
                   
                  ) 
                 
               
              
                x 
                ≥ 
                1 
               
             
            
              
                artanh 
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                ln 
                 
                
                  ( 
                  
                    
                      
                        1 
                        + 
                        x 
                       
                      
                        1 
                        − 
                        x 
                       
                     
                   
                  ) 
                 
               
              
                
                  | 
                 
                x 
                
                  | 
                 
                < 
                1 
               
             
            
              
                arcoth 
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                ln 
                 
                
                  ( 
                  
                    
                      
                        x 
                        + 
                        1 
                       
                      
                        x 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
               
              
                
                  | 
                 
                x 
                
                  | 
                 
                > 
                1 
               
             
            
              
                arsech 
                 
                ( 
                x 
                ) 
               
              
                = 
                ln 
                 
                
                  ( 
                  
                    
                      
                        1 
                        x 
                       
                     
                    + 
                    
                      
                        
                          
                            1 
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                = 
                ln 
                 
                
                  ( 
                  
                    
                      
                        1 
                        + 
                        
                          
                            1 
                            − 
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                       
                      x 
                     
                   
                  ) 
                 
               
              
                0 
                < 
                x 
                ≤ 
                1 
               
             
            
              
                arcsch 
                 
                ( 
                x 
                ) 
               
              
                = 
                ln 
                 
                
                  ( 
                  
                    
                      
                        1 
                        x 
                       
                     
                    + 
                    
                      
                        
                          
                            1 
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                        + 
                        1 
                       
                     
                   
                  ) 
                 
               
              
                x 
                ≠ 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {arsinh} (x)&=\ln \left(x+{\sqrt {x^{2}+1}}\right)\\\operatorname {arcosh} (x)&=\ln \left(x+{\sqrt {x^{2}-1}}\right)&&x\geq 1\\\operatorname {artanh} (x)&={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right)&&|x|<1\\\operatorname {arcoth} (x)&={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right)&&|x|>1\\\operatorname {arsech} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}-1}}\right)=\ln \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)&&0<x\leq 1\\\operatorname {arcsch} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}+1}}\right)&&x\neq 0\end{aligned}}} 
   
 
Derivatives 
  
    
      
        
          
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                sinh 
                 
                x 
               
              
                = 
                cosh 
                 
                x 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                cosh 
                 
                x 
               
              
                = 
                sinh 
                 
                x 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                tanh 
                 
                x 
               
              
                = 
                1 
                − 
                
                  tanh 
                  
                    2 
                   
                 
                 
                x 
                = 
                
                  sech 
                  
                    2 
                   
                 
                 
                x 
                = 
                
                  
                    1 
                    
                      
                        cosh 
                        
                          2 
                         
                       
                       
                      x 
                     
                   
                 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                coth 
                 
                x 
               
              
                = 
                1 
                − 
                
                  coth 
                  
                    2 
                   
                 
                 
                x 
                = 
                − 
                
                  csch 
                  
                    2 
                   
                 
                 
                x 
                = 
                − 
                
                  
                    1 
                    
                      
                        sinh 
                        
                          2 
                         
                       
                       
                      x 
                     
                   
                 
               
              
                x 
                ≠ 
                0 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                sech 
                 
                x 
               
              
                = 
                − 
                tanh 
                 
                x 
                sech 
                 
                x 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                csch 
                 
                x 
               
              
                = 
                − 
                coth 
                 
                x 
                csch 
                 
                x 
               
              
                x 
                ≠ 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {d}{dx}}\sinh x&=\cosh x\\{\frac {d}{dx}}\cosh x&=\sinh x\\{\frac {d}{dx}}\tanh x&=1-\tanh ^{2}x=\operatorname {sech} ^{2}x={\frac {1}{\cosh ^{2}x}}\\{\frac {d}{dx}}\coth x&=1-\coth ^{2}x=-\operatorname {csch} ^{2}x=-{\frac {1}{\sinh ^{2}x}}&&x\neq 0\\{\frac {d}{dx}}\operatorname {sech} x&=-\tanh x\operatorname {sech} x\\{\frac {d}{dx}}\operatorname {csch} x&=-\coth x\operatorname {csch} x&&x\neq 0\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                arsinh 
                 
                x 
               
              
                = 
                
                  
                    1 
                    
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      1 
                     
                   
                 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                arcosh 
                 
                x 
               
              
                = 
                
                  
                    1 
                    
                      
                        x 
                        
                          2 
                         
                       
                      − 
                      1 
                     
                   
                 
               
              
                1 
                < 
                x 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                artanh 
                 
                x 
               
              
                = 
                
                  
                    1 
                    
                      1 
                      − 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
               
              
                
                  | 
                 
                x 
                
                  | 
                 
                < 
                1 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                arcoth 
                 
                x 
               
              
                = 
                
                  
                    1 
                    
                      1 
                      − 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                 
               
              
                1 
                < 
                
                  | 
                 
                x 
                
                  | 
                 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                arsech 
                 
                x 
               
              
                = 
                − 
                
                  
                    1 
                    
                      x 
                      
                        
                          1 
                          − 
                          
                            x 
                            
                              2 
                             
                           
                         
                       
                     
                   
                 
               
              
                0 
                < 
                x 
                < 
                1 
               
             
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                arcsch 
                 
                x 
               
              
                = 
                − 
                
                  
                    1 
                    
                      
                        | 
                       
                      x 
                      
                        | 
                       
                      
                        
                          1 
                          + 
                          
                            x 
                            
                              2 
                             
                           
                         
                       
                     
                   
                 
               
              
                x 
                ≠ 
                0 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsinh} x&={\frac {1}{\sqrt {x^{2}+1}}}\\{\frac {d}{dx}}\operatorname {arcosh} x&={\frac {1}{\sqrt {x^{2}-1}}}&&1<x\\{\frac {d}{dx}}\operatorname {artanh} x&={\frac {1}{1-x^{2}}}&&|x|<1\\{\frac {d}{dx}}\operatorname {arcoth} x&={\frac {1}{1-x^{2}}}&&1<|x|\\{\frac {d}{dx}}\operatorname {arsech} x&=-{\frac {1}{x{\sqrt {1-x^{2}}}}}&&0<x<1\\{\frac {d}{dx}}\operatorname {arcsch} x&=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}&&x\neq 0\end{aligned}}} 
   
 
Second derivatives 
Each of the functions sinh  and cosh  is equal to its second derivative , that is:
  
    
      
        
          
            
              d 
              
                2 
               
             
            
              d 
              
                x 
                
                  2 
                 
               
             
           
         
        sinh 
         
        x 
        = 
        sinh 
         
        x 
       
     
    {\displaystyle {\frac {d^{2}}{dx^{2}}}\sinh x=\sinh x} 
   
 
  
    
      
        
          
            
              d 
              
                2 
               
             
            
              d 
              
                x 
                
                  2 
                 
               
             
           
         
        cosh 
         
        x 
        = 
        cosh 
         
        x 
        . 
       
     
    {\displaystyle {\frac {d^{2}}{dx^{2}}}\cosh x=\cosh x\,.} 
   
 
All functions with this property are linear combinations  of sinh  and cosh , in particular the exponential functions  
  
    
      
        
          e 
          
            x 
           
         
       
     
    {\displaystyle e^{x}} 
   
 
  
    
      
        
          e 
          
            − 
            x 
           
         
       
     
    {\displaystyle e^{-x}} 
   
 [ 24] 
Standard integrals 
  
    
      
        
          
            
              
                ∫ 
                sinh 
                 
                ( 
                a 
                x 
                ) 
                d 
                x 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                cosh 
                 
                ( 
                a 
                x 
                ) 
                + 
                C 
               
             
            
              
                ∫ 
                cosh 
                 
                ( 
                a 
                x 
                ) 
                d 
                x 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                sinh 
                 
                ( 
                a 
                x 
                ) 
                + 
                C 
               
             
            
              
                ∫ 
                tanh 
                 
                ( 
                a 
                x 
                ) 
                d 
                x 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                ln 
                 
                ( 
                cosh 
                 
                ( 
                a 
                x 
                ) 
                ) 
                + 
                C 
               
             
            
              
                ∫ 
                coth 
                 
                ( 
                a 
                x 
                ) 
                d 
                x 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                ln 
                 
                
                  | 
                  
                    sinh 
                     
                    ( 
                    a 
                    x 
                    ) 
                   
                  | 
                 
                + 
                C 
               
             
            
              
                ∫ 
                sech 
                 
                ( 
                a 
                x 
                ) 
                d 
                x 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                arctan 
                 
                ( 
                sinh 
                 
                ( 
                a 
                x 
                ) 
                ) 
                + 
                C 
               
             
            
              
                ∫ 
                csch 
                 
                ( 
                a 
                x 
                ) 
                d 
                x 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                ln 
                 
                
                  | 
                  
                    tanh 
                     
                    
                      ( 
                      
                        
                          
                            a 
                            x 
                           
                          2 
                         
                       
                      ) 
                     
                   
                  | 
                 
                + 
                C 
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                ln 
                 
                
                  | 
                  
                    coth 
                     
                    
                      ( 
                      
                        a 
                        x 
                       
                      ) 
                     
                    − 
                    csch 
                     
                    
                      ( 
                      
                        a 
                        x 
                       
                      ) 
                     
                   
                  | 
                 
                + 
                C 
                = 
                − 
                
                  a 
                  
                    − 
                    1 
                   
                 
                arcoth 
                 
                
                  ( 
                  
                    cosh 
                     
                    
                      ( 
                      
                        a 
                        x 
                       
                      ) 
                     
                   
                  ) 
                 
                + 
                C 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\int \sinh(ax)\,dx&=a^{-1}\cosh(ax)+C\\\int \cosh(ax)\,dx&=a^{-1}\sinh(ax)+C\\\int \tanh(ax)\,dx&=a^{-1}\ln(\cosh(ax))+C\\\int \coth(ax)\,dx&=a^{-1}\ln \left|\sinh(ax)\right|+C\\\int \operatorname {sech} (ax)\,dx&=a^{-1}\arctan(\sinh(ax))+C\\\int \operatorname {csch} (ax)\,dx&=a^{-1}\ln \left|\tanh \left({\frac {ax}{2}}\right)\right|+C=a^{-1}\ln \left|\coth \left(ax\right)-\operatorname {csch} \left(ax\right)\right|+C=-a^{-1}\operatorname {arcoth} \left(\cosh \left(ax\right)\right)+C\end{aligned}}} 
   
 
The following integrals can be proved using hyperbolic substitution :
  
    
      
        
          
            
              
                ∫ 
                
                  
                    
                      1 
                      
                        
                          a 
                          
                            2 
                           
                         
                        + 
                        
                          u 
                          
                            2 
                           
                         
                       
                     
                   
                  d 
                  u 
                 
               
              
                = 
                arsinh 
                 
                
                  ( 
                  
                    
                      u 
                      a 
                     
                   
                  ) 
                 
                + 
                C 
               
             
            
              
                ∫ 
                
                  
                    
                      1 
                      
                        
                          u 
                          
                            2 
                           
                         
                        − 
                        
                          a 
                          
                            2 
                           
                         
                       
                     
                   
                  d 
                  u 
                 
               
              
                = 
                sgn 
                 
                
                  u 
                 
                arcosh 
                 
                
                  | 
                  
                    
                      u 
                      a 
                     
                   
                  | 
                 
                + 
                C 
               
             
            
              
                ∫ 
                
                  
                    1 
                    
                      
                        a 
                        
                          2 
                         
                       
                      − 
                      
                        u 
                        
                          2 
                         
                       
                     
                   
                 
                d 
                u 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                artanh 
                 
                
                  ( 
                  
                    
                      u 
                      a 
                     
                   
                  ) 
                 
                + 
                C 
               
              
                
                  u 
                  
                    2 
                   
                 
                < 
                
                  a 
                  
                    2 
                   
                 
               
             
            
              
                ∫ 
                
                  
                    1 
                    
                      
                        a 
                        
                          2 
                         
                       
                      − 
                      
                        u 
                        
                          2 
                         
                       
                     
                   
                 
                d 
                u 
               
              
                = 
                
                  a 
                  
                    − 
                    1 
                   
                 
                arcoth 
                 
                
                  ( 
                  
                    
                      u 
                      a 
                     
                   
                  ) 
                 
                + 
                C 
               
              
                
                  u 
                  
                    2 
                   
                 
                > 
                
                  a 
                  
                    2 
                   
                 
               
             
            
              
                ∫ 
                
                  
                    
                      1 
                      
                        u 
                        
                          
                            
                              a 
                              
                                2 
                               
                             
                            − 
                            
                              u 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                  d 
                  u 
                 
               
              
                = 
                − 
                
                  a 
                  
                    − 
                    1 
                   
                 
                arsech 
                 
                
                  | 
                  
                    
                      u 
                      a 
                     
                   
                  | 
                 
                + 
                C 
               
             
            
              
                ∫ 
                
                  
                    
                      1 
                      
                        u 
                        
                          
                            
                              a 
                              
                                2 
                               
                             
                            + 
                            
                              u 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                  d 
                  u 
                 
               
              
                = 
                − 
                
                  a 
                  
                    − 
                    1 
                   
                 
                arcsch 
                 
                
                  | 
                  
                    
                      u 
                      a 
                     
                   
                  | 
                 
                + 
                C 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\int {{\frac {1}{\sqrt {a^{2}+u^{2}}}}\,du}&=\operatorname {arsinh} \left({\frac {u}{a}}\right)+C\\\int {{\frac {1}{\sqrt {u^{2}-a^{2}}}}\,du}&=\operatorname {sgn} {u}\operatorname {arcosh} \left|{\frac {u}{a}}\right|+C\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {artanh} \left({\frac {u}{a}}\right)+C&&u^{2}<a^{2}\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {arcoth} \left({\frac {u}{a}}\right)+C&&u^{2}>a^{2}\\\int {{\frac {1}{u{\sqrt {a^{2}-u^{2}}}}}\,du}&=-a^{-1}\operatorname {arsech} \left|{\frac {u}{a}}\right|+C\\\int {{\frac {1}{u{\sqrt {a^{2}+u^{2}}}}}\,du}&=-a^{-1}\operatorname {arcsch} \left|{\frac {u}{a}}\right|+C\end{aligned}}} 
   
 
where C  is the constant of integration .
Taylor series expressions 
It is possible to express explicitly the Taylor series  at zero (or the Laurent series , if the function is not defined at zero) of the above functions.
  
    
      
        sinh 
         
        x 
        = 
        x 
        + 
        
          
            
              x 
              
                3 
               
             
            
              3 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                5 
               
             
            
              5 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                7 
               
             
            
              7 
              ! 
             
           
         
        + 
        ⋯ 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              x 
              
                2 
                n 
                + 
                1 
               
             
            
              ( 
              2 
              n 
              + 
              1 
              ) 
              ! 
             
           
         
       
     
    {\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}} 
   
 convergent  for every complex  value of x . Since the function sinh x   is odd , only odd exponents for x 
  
    
      
        cosh 
         
        x 
        = 
        1 
        + 
        
          
            
              x 
              
                2 
               
             
            
              2 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                6 
               
             
            
              6 
              ! 
             
           
         
        + 
        ⋯ 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              x 
              
                2 
                n 
               
             
            
              ( 
              2 
              n 
              ) 
              ! 
             
           
         
       
     
    {\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}} 
   
 convergent  for every complex  value of x . Since the function cosh x   is even , only even exponents for x  occur in its Taylor series.
The sum of the sinh and cosh series is the infinite series  expression of the exponential function .
The following series are followed by a description of a subset of their domain of convergence , where the series is convergent and its sum equals the function.
  
    
      
        
          
            
              
                tanh 
                 
                x 
               
              
                = 
                x 
                − 
                
                  
                    
                      x 
                      
                        3 
                       
                     
                    3 
                   
                 
                + 
                
                  
                    
                      2 
                      
                        x 
                        
                          5 
                         
                       
                     
                    15 
                   
                 
                − 
                
                  
                    
                      17 
                      
                        x 
                        
                          7 
                         
                       
                     
                    315 
                   
                 
                + 
                ⋯ 
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        2 
                        
                          2 
                          n 
                         
                       
                      ( 
                      
                        2 
                        
                          2 
                          n 
                         
                       
                      − 
                      1 
                      ) 
                      
                        B 
                        
                          2 
                          n 
                         
                       
                      
                        x 
                        
                          2 
                          n 
                          − 
                          1 
                         
                       
                     
                    
                      ( 
                      2 
                      n 
                      ) 
                      ! 
                     
                   
                 
                , 
                
                  | 
                  x 
                  | 
                 
                < 
                
                  
                    π 
                    2 
                   
                 
               
             
            
              
                coth 
                 
                x 
               
              
                = 
                
                  x 
                  
                    − 
                    1 
                   
                 
                + 
                
                  
                    x 
                    3 
                   
                 
                − 
                
                  
                    
                      x 
                      
                        3 
                       
                     
                    45 
                   
                 
                + 
                
                  
                    
                      2 
                      
                        x 
                        
                          5 
                         
                       
                     
                    945 
                   
                 
                + 
                ⋯ 
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        2 
                        
                          2 
                          n 
                         
                       
                      
                        B 
                        
                          2 
                          n 
                         
                       
                      
                        x 
                        
                          2 
                          n 
                          − 
                          1 
                         
                       
                     
                    
                      ( 
                      2 
                      n 
                      ) 
                      ! 
                     
                   
                 
                , 
                0 
                < 
                
                  | 
                  x 
                  | 
                 
                < 
                π 
               
             
            
              
                sech 
                 
                x 
               
              
                = 
                1 
                − 
                
                  
                    
                      x 
                      
                        2 
                       
                     
                    2 
                   
                 
                + 
                
                  
                    
                      5 
                      
                        x 
                        
                          4 
                         
                       
                     
                    24 
                   
                 
                − 
                
                  
                    
                      61 
                      
                        x 
                        
                          6 
                         
                       
                     
                    720 
                   
                 
                + 
                ⋯ 
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        E 
                        
                          2 
                          n 
                         
                       
                      
                        x 
                        
                          2 
                          n 
                         
                       
                     
                    
                      ( 
                      2 
                      n 
                      ) 
                      ! 
                     
                   
                 
                , 
                
                  | 
                  x 
                  | 
                 
                < 
                
                  
                    π 
                    2 
                   
                 
               
             
            
              
                csch 
                 
                x 
               
              
                = 
                
                  x 
                  
                    − 
                    1 
                   
                 
                − 
                
                  
                    x 
                    6 
                   
                 
                + 
                
                  
                    
                      7 
                      
                        x 
                        
                          3 
                         
                       
                     
                    360 
                   
                 
                − 
                
                  
                    
                      31 
                      
                        x 
                        
                          5 
                         
                       
                     
                    15120 
                   
                 
                + 
                ⋯ 
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      2 
                      ( 
                      1 
                      − 
                      
                        2 
                        
                          2 
                          n 
                          − 
                          1 
                         
                       
                      ) 
                      
                        B 
                        
                          2 
                          n 
                         
                       
                      
                        x 
                        
                          2 
                          n 
                          − 
                          1 
                         
                       
                     
                    
                      ( 
                      2 
                      n 
                      ) 
                      ! 
                     
                   
                 
                , 
                0 
                < 
                
                  | 
                  x 
                  | 
                 
                < 
                π 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\tanh x&=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\coth x&=x^{-1}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots =\sum _{n=0}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \\\operatorname {sech} x&=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\operatorname {csch} x&=x^{-1}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots =\sum _{n=0}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \end{aligned}}} 
   
 
where:
Infinite products and continued fractions 
The following expansions are valid in the whole complex plane:
  
    
      
        sinh 
         
        x 
        = 
        x 
        
          ∏ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          ( 
          
            1 
            + 
            
              
                
                  x 
                  
                    2 
                   
                 
                
                  
                    n 
                    
                      2 
                     
                   
                  
                    π 
                    
                      2 
                     
                   
                 
               
             
           
          ) 
         
        = 
        
          
            
              
                 
              
                
                  x 
                 
               
             
            
              
                 
              
                
                  1 
                  − 
                  
                    
                      
                        
                           
                        
                          
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                       
                      
                        
                           
                        
                          
                            2 
                            ⋅ 
                            3 
                            + 
                            
                              x 
                              
                                2 
                               
                             
                            − 
                            
                              
                                
                                  
                                     
                                  
                                    
                                      2 
                                      ⋅ 
                                      3 
                                      
                                        x 
                                        
                                          2 
                                         
                                       
                                     
                                   
                                 
                                
                                  
                                     
                                  
                                    
                                      4 
                                      ⋅ 
                                      5 
                                      + 
                                      
                                        x 
                                        
                                          2 
                                         
                                       
                                      − 
                                      
                                        
                                          
                                            
                                               
                                            
                                              
                                                4 
                                                ⋅ 
                                                5 
                                                
                                                  x 
                                                  
                                                    2 
                                                   
                                                 
                                               
                                             
                                           
                                          
                                            
                                               
                                            
                                              
                                                6 
                                                ⋅ 
                                                7 
                                                + 
                                                
                                                  x 
                                                  
                                                    2 
                                                   
                                                 
                                                − 
                                                ⋱ 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \sinh x=x\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)={\cfrac {x}{1-{\cfrac {x^{2}}{2\cdot 3+x^{2}-{\cfrac {2\cdot 3x^{2}}{4\cdot 5+x^{2}-{\cfrac {4\cdot 5x^{2}}{6\cdot 7+x^{2}-\ddots }}}}}}}}} 
   
 
  
    
      
        cosh 
         
        x 
        = 
        
          ∏ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          ( 
          
            1 
            + 
            
              
                
                  x 
                  
                    2 
                   
                 
                
                  ( 
                  n 
                  − 
                  1 
                  
                    / 
                   
                  2 
                  
                    ) 
                    
                      2 
                     
                   
                  
                    π 
                    
                      2 
                     
                   
                 
               
             
           
          ) 
         
        = 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  1 
                  − 
                  
                    
                      
                        
                           
                        
                          
                            
                              x 
                              
                                2 
                               
                             
                           
                         
                       
                      
                        
                           
                        
                          
                            1 
                            ⋅ 
                            2 
                            + 
                            
                              x 
                              
                                2 
                               
                             
                            − 
                            
                              
                                
                                  
                                     
                                  
                                    
                                      1 
                                      ⋅ 
                                      2 
                                      
                                        x 
                                        
                                          2 
                                         
                                       
                                     
                                   
                                 
                                
                                  
                                     
                                  
                                    
                                      3 
                                      ⋅ 
                                      4 
                                      + 
                                      
                                        x 
                                        
                                          2 
                                         
                                       
                                      − 
                                      
                                        
                                          
                                            
                                               
                                            
                                              
                                                3 
                                                ⋅ 
                                                4 
                                                
                                                  x 
                                                  
                                                    2 
                                                   
                                                 
                                               
                                             
                                           
                                          
                                            
                                               
                                            
                                              
                                                5 
                                                ⋅ 
                                                6 
                                                + 
                                                
                                                  x 
                                                  
                                                    2 
                                                   
                                                 
                                                − 
                                                ⋱ 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \cosh x=\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{(n-1/2)^{2}\pi ^{2}}}\right)={\cfrac {1}{1-{\cfrac {x^{2}}{1\cdot 2+x^{2}-{\cfrac {1\cdot 2x^{2}}{3\cdot 4+x^{2}-{\cfrac {3\cdot 4x^{2}}{5\cdot 6+x^{2}-\ddots }}}}}}}}} 
   
 
  
    
      
        tanh 
         
        x 
        = 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    
                      
                        
                           
                        
                          
                            1 
                           
                         
                       
                      
                        
                           
                        
                          
                            x 
                           
                         
                       
                     
                   
                  + 
                  
                    
                      
                        
                           
                        
                          
                            1 
                           
                         
                       
                      
                        
                           
                        
                          
                            
                              
                                
                                  
                                     
                                  
                                    
                                      3 
                                     
                                   
                                 
                                
                                  
                                     
                                  
                                    
                                      x 
                                     
                                   
                                 
                               
                             
                            + 
                            
                              
                                
                                  
                                     
                                  
                                    
                                      1 
                                     
                                   
                                 
                                
                                  
                                     
                                  
                                    
                                      
                                        
                                          
                                            
                                               
                                            
                                              
                                                5 
                                               
                                             
                                           
                                          
                                            
                                               
                                            
                                              
                                                x 
                                               
                                             
                                           
                                         
                                       
                                      + 
                                      
                                        
                                          
                                            
                                               
                                            
                                              
                                                1 
                                               
                                             
                                           
                                          
                                            
                                               
                                            
                                              
                                                
                                                  
                                                    
                                                      
                                                         
                                                      
                                                        
                                                          7 
                                                         
                                                       
                                                     
                                                    
                                                      
                                                         
                                                      
                                                        
                                                          x 
                                                         
                                                       
                                                     
                                                   
                                                 
                                                + 
                                                ⋱ 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \tanh x={\cfrac {1}{{\cfrac {1}{x}}+{\cfrac {1}{{\cfrac {3}{x}}+{\cfrac {1}{{\cfrac {5}{x}}+{\cfrac {1}{{\cfrac {7}{x}}+\ddots }}}}}}}}} 
   
 
Comparison with circular functions 
Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector  area u  and hyperbolic functions depending on hyperbolic sector  area u . The hyperbolic functions represent an expansion of trigonometry  beyond the circular functions . Both types depend on an argument , either circular angle  or hyperbolic angle .
Since the area of a circular sector  with radius r  and angle u  (in radians) is r 2 u /2u  when r  = √2  xy  = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector  with area corresponding to hyperbolic angle magnitude.
The legs of the two right triangles  with hypotenuse  on the ray defining the angles are of length √2   times the circular and hyperbolic functions.
The hyperbolic angle is an invariant measure  with respect to the squeeze mapping , just as the circular angle is invariant under rotation.[ 25] 
The Gudermannian function  gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.
The graph of the function 
  
    
      
        a 
        cosh 
         
        ( 
        x 
        
          / 
         
        a 
        ) 
       
     
    {\displaystyle a\cosh(x/a)} 
   
   is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Relationship to the exponential function 
The decomposition of the exponential function in its even and odd parts  gives the identities
  
    
      
        
          e 
          
            x 
           
         
        = 
        cosh 
         
        x 
        + 
        sinh 
         
        x 
        , 
       
     
    {\displaystyle e^{x}=\cosh x+\sinh x,} 
   
 
  
    
      
        
          e 
          
            − 
            x 
           
         
        = 
        cosh 
         
        x 
        − 
        sinh 
         
        x 
        . 
       
     
    {\displaystyle e^{-x}=\cosh x-\sinh x.} 
   
 Euler's formula 
  
    
      
        
          e 
          
            i 
            x 
           
         
        = 
        cos 
         
        x 
        + 
        i 
        sin 
         
        x 
        , 
       
     
    {\displaystyle e^{ix}=\cos x+i\sin x,} 
   
 
  
    
      
        
          e 
          
            x 
            + 
            i 
            y 
           
         
        = 
        ( 
        cosh 
         
        x 
        + 
        sinh 
         
        x 
        ) 
        ( 
        cos 
         
        y 
        + 
        i 
        sin 
         
        y 
        ) 
       
     
    {\displaystyle e^{x+iy}=(\cosh x+\sinh x)(\cos y+i\sin y)} 
   
 general complex exponential function .
Additionally,
  
    
      
        
          e 
          
            x 
           
         
        = 
        
          
            
              
                1 
                + 
                tanh 
                 
                x 
               
              
                1 
                − 
                tanh 
                 
                x 
               
             
           
         
        = 
        
          
            
              1 
              + 
              tanh 
               
              
                
                  x 
                  2 
                 
               
             
            
              1 
              − 
              tanh 
               
              
                
                  x 
                  2 
                 
               
             
           
         
       
     
    {\displaystyle e^{x}={\sqrt {\frac {1+\tanh x}{1-\tanh x}}}={\frac {1+\tanh {\frac {x}{2}}}{1-\tanh {\frac {x}{2}}}}} 
   
 
Hyperbolic functions for complex numbers 
Hyperbolic functions in the complex plane
 
 
  
    
      
        sinh 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \sinh(z)} 
   
 
  
    
      
        cosh 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \cosh(z)} 
   
 
  
    
      
        tanh 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \tanh(z)} 
   
 
  
    
      
        coth 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \coth(z)} 
   
 
  
    
      
        sech 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \operatorname {sech} (z)} 
   
 
  
    
      
        csch 
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \operatorname {csch} (z)} 
   
  
Since the exponential function  can be defined for any complex  argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions sinh z   and cosh z   are then holomorphic .
Relationships to ordinary trigonometric functions are given by Euler's formula  for complex numbers:
  
    
      
        
          
            
              
                
                  e 
                  
                    i 
                    x 
                   
                 
               
              
                = 
                cos 
                 
                x 
                + 
                i 
                sin 
                 
                x 
               
             
            
              
                
                  e 
                  
                    − 
                    i 
                    x 
                   
                 
               
              
                = 
                cos 
                 
                x 
                − 
                i 
                sin 
                 
                x 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}e^{ix}&=\cos x+i\sin x\\e^{-ix}&=\cos x-i\sin x\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                cosh 
                 
                ( 
                i 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                
                  ( 
                  
                    
                      e 
                      
                        i 
                        x 
                       
                     
                    + 
                    
                      e 
                      
                        − 
                        i 
                        x 
                       
                     
                   
                  ) 
                 
                = 
                cos 
                 
                x 
               
             
            
              
                sinh 
                 
                ( 
                i 
                x 
                ) 
               
              
                = 
                
                  
                    1 
                    2 
                   
                 
                
                  ( 
                  
                    
                      e 
                      
                        i 
                        x 
                       
                     
                    − 
                    
                      e 
                      
                        − 
                        i 
                        x 
                       
                     
                   
                  ) 
                 
                = 
                i 
                sin 
                 
                x 
               
             
            
              
                tanh 
                 
                ( 
                i 
                x 
                ) 
               
              
                = 
                i 
                tan 
                 
                x 
               
             
            
              
                cosh 
                 
                ( 
                x 
                + 
                i 
                y 
                ) 
               
              
                = 
                cosh 
                 
                ( 
                x 
                ) 
                cos 
                 
                ( 
                y 
                ) 
                + 
                i 
                sinh 
                 
                ( 
                x 
                ) 
                sin 
                 
                ( 
                y 
                ) 
               
             
            
              
                sinh 
                 
                ( 
                x 
                + 
                i 
                y 
                ) 
               
              
                = 
                sinh 
                 
                ( 
                x 
                ) 
                cos 
                 
                ( 
                y 
                ) 
                + 
                i 
                cosh 
                 
                ( 
                x 
                ) 
                sin 
                 
                ( 
                y 
                ) 
               
             
            
              
                tanh 
                 
                ( 
                x 
                + 
                i 
                y 
                ) 
               
              
                = 
                
                  
                    
                      tanh 
                       
                      ( 
                      x 
                      ) 
                      + 
                      i 
                      tan 
                       
                      ( 
                      y 
                      ) 
                     
                    
                      1 
                      + 
                      i 
                      tanh 
                       
                      ( 
                      x 
                      ) 
                      tan 
                       
                      ( 
                      y 
                      ) 
                     
                   
                 
               
             
            
              
                cosh 
                 
                x 
               
              
                = 
                cos 
                 
                ( 
                i 
                x 
                ) 
               
             
            
              
                sinh 
                 
                x 
               
              
                = 
                − 
                i 
                sin 
                 
                ( 
                i 
                x 
                ) 
               
             
            
              
                tanh 
                 
                x 
               
              
                = 
                − 
                i 
                tan 
                 
                ( 
                i 
                x 
                ) 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cosh(ix)&={\frac {1}{2}}\left(e^{ix}+e^{-ix}\right)=\cos x\\\sinh(ix)&={\frac {1}{2}}\left(e^{ix}-e^{-ix}\right)=i\sin x\\\tanh(ix)&=i\tan x\\\cosh(x+iy)&=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\\\sinh(x+iy)&=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\\\tanh(x+iy)&={\frac {\tanh(x)+i\tan(y)}{1+i\tanh(x)\tan(y)}}\\\cosh x&=\cos(ix)\\\sinh x&=-i\sin(ix)\\\tanh x&=-i\tan(ix)\end{aligned}}} 
   
 
Thus, hyperbolic functions are periodic  with respect to the imaginary component, with period 
  
    
      
        2 
        π 
        i 
       
     
    {\displaystyle 2\pi i} 
   
 
  
    
      
        π 
        i 
       
     
    {\displaystyle \pi i} 
   
 
See also 
References 
^ a b c d   Weisstein, Eric W.  "Hyperbolic Functions" . mathworld.wolfram.com . Retrieved 2020-08-29  .^ (1999) Collins Concise Dictionary , 4th edition, HarperCollins, Glasgow, ISBN  0 00 472257 4 , p. 1386 
^ a b   Collins Concise Dictionary , p. 328^ a b   "Hyperbolic Functions" . www.mathsisfun.com . Retrieved 2020-08-29  .^ Collins Concise Dictionary , p. 1520^ Collins Concise Dictionary , p. 329^ tanh ^ Collins Concise Dictionary , p. 1340^ Woodhouse, N. M. J.  (2003), Special Relativity , London: Springer, p. 71, ISBN  978-1-85233-426-0 ^ Abramowitz, Milton ; Stegun, Irene A. , eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Dover Publications , ISBN  978-0-486-61272-0 ^ Some examples of using arcsinh   found in Google Books .^ Niven, Ivan (1985). Irrational Numbers . Vol. 11. Mathematical Association of America. ISBN  9780883850381 . JSTOR  10.4169/j.ctt5hh8zn . ^ a b   George F. Becker; C. E. Van Orstrand (1909). Hyperbolic Functions  ^ a b c d e f   McMahon, James (1896). Hyperbolic Functions  ^ a b c d   Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation.  Mathematical Association of America, 2007. Page 100. 
^ Becker, Georg F. Hyperbolic functions.  Read Books, 1931. Page xlviii. 
^ N.P., Bali (2005). Golden Integral Calculus ISBN  81-7008-169-6 . ^ Steeb, Willi-Hans (2005). Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs ISBN  978-981-310-648-2 . Extract of page 281 (using lambda=1) ^ Oldham, Keith B.; Myland, Jan; Spanier, Jerome (2010). An Atlas of Functions: with Equator, the Atlas Function Calculator ISBN  978-0-387-48807-3 . Extract of page 290 ^ Osborn, G. (July 1902). "Mnemonic for hyperbolic formulae" . The Mathematical Gazette 2  (34): 189. doi :10.2307/3602492 . JSTOR  3602492 . S2CID  125866575 . ^ Martin, George E. (1986). The foundations of geometry and the non-Euclidean plane  (1st corr. ed.). New York: Springer-Verlag. p. 416. ISBN  3-540-90694-0 . ^ "Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x)" . StackExchange  (mathematics). Retrieved 24 January  2016 .^ Audibert, Jean-Yves (2009). "Fast learning rates in statistical inference through aggregation". The Annals of Statistics. p. 1627. [1] ^ Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Hyperbolic functions" , NIST Handbook of Mathematical Functions ISBN  978-0-521-19225-5 , MR  2723248 ^ Haskell, Mellen W. , "On the introduction of the notion of hyperbolic functions",  Bulletin of the American Mathematical Society  1 :6:155–9, full text   
External links 
Trigonometric and hyperbolic functions
Groups Other 
Authority control databases 
National Other