In mathematics , the Fibonacci polynomials  are a polynomial sequence  which can be considered as a generalization of the Fibonacci numbers . The polynomials generated in a similar way from the Lucas numbers  are called Lucas polynomials .
Definition 
These Fibonacci polynomials  are defined by a recurrence relation :[ 1] 
  
    
      
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  0 
                  , 
                 
                
                  
                    
                      if  
                     
                   
                  n 
                  = 
                  0 
                 
               
              
                
                  1 
                  , 
                 
                
                  
                    
                      if  
                     
                   
                  n 
                  = 
                  1 
                 
               
              
                
                  x 
                  
                    F 
                    
                      n 
                      − 
                      1 
                     
                   
                  ( 
                  x 
                  ) 
                  + 
                  
                    F 
                    
                      n 
                      − 
                      2 
                     
                   
                  ( 
                  x 
                  ) 
                  , 
                 
                
                  
                    
                      if  
                     
                   
                  n 
                  ≥ 
                  2 
                 
               
             
             
         
       
     
    {\displaystyle F_{n}(x)={\begin{cases}0,&{\mbox{if }}n=0\\1,&{\mbox{if }}n=1\\xF_{n-1}(x)+F_{n-2}(x),&{\mbox{if }}n\geq 2\end{cases}}} 
   
 The Lucas polynomials use the same recurrence with different starting values:[ 2] 
  
    
      
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  2 
                  , 
                 
                
                  
                    
                      if  
                     
                   
                  n 
                  = 
                  0 
                 
               
              
                
                  x 
                  , 
                 
                
                  
                    
                      if  
                     
                   
                  n 
                  = 
                  1 
                 
               
              
                
                  x 
                  
                    L 
                    
                      n 
                      − 
                      1 
                     
                   
                  ( 
                  x 
                  ) 
                  + 
                  
                    L 
                    
                      n 
                      − 
                      2 
                     
                   
                  ( 
                  x 
                  ) 
                  , 
                 
                
                  
                    
                      if  
                     
                   
                  n 
                  ≥ 
                  2. 
                 
               
             
             
         
       
     
    {\displaystyle L_{n}(x)={\begin{cases}2,&{\mbox{if }}n=0\\x,&{\mbox{if }}n=1\\xL_{n-1}(x)+L_{n-2}(x),&{\mbox{if }}n\geq 2.\end{cases}}} 
   
 They can be defined for negative indices by[ 3] 
  
    
      
        
          F 
          
            − 
            n 
           
         
        ( 
        x 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
            − 
            1 
           
         
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        , 
       
     
    {\displaystyle F_{-n}(x)=(-1)^{n-1}F_{n}(x),} 
   
 
  
    
      
        
          L 
          
            − 
            n 
           
         
        ( 
        x 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        . 
       
     
    {\displaystyle L_{-n}(x)=(-1)^{n}L_{n}(x).} 
   
 The Fibonacci polynomials form a sequence of orthogonal polynomials  with 
  
    
      
        
          A 
          
            n 
           
         
        = 
        
          C 
          
            n 
           
         
        = 
        1 
       
     
    {\displaystyle A_{n}=C_{n}=1} 
   
 
  
    
      
        
          B 
          
            n 
           
         
        = 
        0 
       
     
    {\displaystyle B_{n}=0} 
   
 
Examples 
The first few Fibonacci polynomials are:
  
    
      
        
          F 
          
            0 
           
         
        ( 
        x 
        ) 
        = 
        0 
         
     
    {\displaystyle F_{0}(x)=0\,} 
   
 
  
    
      
        
          F 
          
            1 
           
         
        ( 
        x 
        ) 
        = 
        1 
         
     
    {\displaystyle F_{1}(x)=1\,} 
   
 
  
    
      
        
          F 
          
            2 
           
         
        ( 
        x 
        ) 
        = 
        x 
         
     
    {\displaystyle F_{2}(x)=x\,} 
   
 
  
    
      
        
          F 
          
            3 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            2 
           
         
        + 
        1 
         
     
    {\displaystyle F_{3}(x)=x^{2}+1\,} 
   
 
  
    
      
        
          F 
          
            4 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            3 
           
         
        + 
        2 
        x 
         
     
    {\displaystyle F_{4}(x)=x^{3}+2x\,} 
   
 
  
    
      
        
          F 
          
            5 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            4 
           
         
        + 
        3 
        
          x 
          
            2 
           
         
        + 
        1 
         
     
    {\displaystyle F_{5}(x)=x^{4}+3x^{2}+1\,} 
   
 
  
    
      
        
          F 
          
            6 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            5 
           
         
        + 
        4 
        
          x 
          
            3 
           
         
        + 
        3 
        x 
         
     
    {\displaystyle F_{6}(x)=x^{5}+4x^{3}+3x\,} 
   
 The first few Lucas polynomials are:
  
    
      
        
          L 
          
            0 
           
         
        ( 
        x 
        ) 
        = 
        2 
         
     
    {\displaystyle L_{0}(x)=2\,} 
   
 
  
    
      
        
          L 
          
            1 
           
         
        ( 
        x 
        ) 
        = 
        x 
         
     
    {\displaystyle L_{1}(x)=x\,} 
   
 
  
    
      
        
          L 
          
            2 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            2 
           
         
        + 
        2 
         
     
    {\displaystyle L_{2}(x)=x^{2}+2\,} 
   
 
  
    
      
        
          L 
          
            3 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            3 
           
         
        + 
        3 
        x 
         
     
    {\displaystyle L_{3}(x)=x^{3}+3x\,} 
   
 
  
    
      
        
          L 
          
            4 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            4 
           
         
        + 
        4 
        
          x 
          
            2 
           
         
        + 
        2 
         
     
    {\displaystyle L_{4}(x)=x^{4}+4x^{2}+2\,} 
   
 
  
    
      
        
          L 
          
            5 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            5 
           
         
        + 
        5 
        
          x 
          
            3 
           
         
        + 
        5 
        x 
         
     
    {\displaystyle L_{5}(x)=x^{5}+5x^{3}+5x\,} 
   
 
  
    
      
        
          L 
          
            6 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            6 
           
         
        + 
        6 
        
          x 
          
            4 
           
         
        + 
        9 
        
          x 
          
            2 
           
         
        + 
        2. 
         
     
    {\displaystyle L_{6}(x)=x^{6}+6x^{4}+9x^{2}+2.\,} 
   
 
Properties 
The degree of F n n  − 1 and the degree of L n n . The Fibonacci and Lucas numbers are recovered by evaluating the polynomials at x  = 1;  Pell numbers  are recovered by evaluating F n x  = 2. The ordinary generating functions  for the sequences are:[ 4] 
  
    
      
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        
          t 
          
            n 
           
         
        = 
        
          
            t 
            
              1 
              − 
              x 
              t 
              − 
              
                t 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle \sum _{n=0}^{\infty }F_{n}(x)t^{n}={\frac {t}{1-xt-t^{2}}}} 
   
 
  
    
      
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        
          t 
          
            n 
           
         
        = 
        
          
            
              2 
              − 
              x 
              t 
             
            
              1 
              − 
              x 
              t 
              − 
              
                t 
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \sum _{n=0}^{\infty }L_{n}(x)t^{n}={\frac {2-xt}{1-xt-t^{2}}}.} 
   
  The polynomials can be expressed in terms of Lucas sequences  as
  
    
      
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          U 
          
            n 
           
         
        ( 
        x 
        , 
        − 
        1 
        ) 
        , 
         
     
    {\displaystyle F_{n}(x)=U_{n}(x,-1),\,} 
   
 
  
    
      
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          V 
          
            n 
           
         
        ( 
        x 
        , 
        − 
        1 
        ) 
        . 
         
     
    {\displaystyle L_{n}(x)=V_{n}(x,-1).\,} 
   
  They can also be expressed in terms of Chebyshev polynomials  
  
    
      
        
          
            
              T 
             
           
          
            n 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle {\mathcal {T}}_{n}(x)} 
   
 
  
    
      
        
          
            
              U 
             
           
          
            n 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle {\mathcal {U}}_{n}(x)} 
   
 
  
    
      
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          i 
          
            n 
            − 
            1 
           
         
        ⋅ 
        
          
            
              U 
             
           
          
            n 
            − 
            1 
           
         
        ( 
        
          
            
              
                − 
                i 
                x 
               
              2 
             
           
         
        ) 
        , 
         
     
    {\displaystyle F_{n}(x)=i^{n-1}\cdot {\mathcal {U}}_{n-1}({\tfrac {-ix}{2}}),\,} 
   
 
  
    
      
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        2 
        ⋅ 
        
          i 
          
            n 
           
         
        ⋅ 
        
          
            
              T 
             
           
          
            n 
           
         
        ( 
        
          
            
              
                − 
                i 
                x 
               
              2 
             
           
         
        ) 
        , 
         
     
    {\displaystyle L_{n}(x)=2\cdot i^{n}\cdot {\mathcal {T}}_{n}({\tfrac {-ix}{2}}),\,} 
   
  where 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
 imaginary unit . 
Identities 
As particular cases of Lucas sequences, Fibonacci polynomials satisfy a number of identities, such as[ 3] 
  
    
      
        
          F 
          
            m 
            + 
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          F 
          
            m 
            + 
            1 
           
         
        ( 
        x 
        ) 
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        + 
        
          F 
          
            m 
           
         
        ( 
        x 
        ) 
        
          F 
          
            n 
            − 
            1 
           
         
        ( 
        x 
        ) 
         
     
    {\displaystyle F_{m+n}(x)=F_{m+1}(x)F_{n}(x)+F_{m}(x)F_{n-1}(x)\,} 
   
 
  
    
      
        
          L 
          
            m 
            + 
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          L 
          
            m 
           
         
        ( 
        x 
        ) 
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        − 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          L 
          
            m 
            − 
            n 
           
         
        ( 
        x 
        ) 
         
     
    {\displaystyle L_{m+n}(x)=L_{m}(x)L_{n}(x)-(-1)^{n}L_{m-n}(x)\,} 
   
 
  
    
      
        
          F 
          
            n 
            + 
            1 
           
         
        ( 
        x 
        ) 
        
          F 
          
            n 
            − 
            1 
           
         
        ( 
        x 
        ) 
        − 
        
          F 
          
            n 
           
         
        ( 
        x 
        
          ) 
          
            2 
           
         
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
         
     
    {\displaystyle F_{n+1}(x)F_{n-1}(x)-F_{n}(x)^{2}=(-1)^{n}\,} 
   
 
  
    
      
        
          F 
          
            2 
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        . 
         
     
    {\displaystyle F_{2n}(x)=F_{n}(x)L_{n}(x).\,} 
   
 Closed form expressions, similar to Binet's formula are:[ 3] 
  
    
      
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          
            
              α 
              ( 
              x 
              
                ) 
                
                  n 
                 
               
              − 
              β 
              ( 
              x 
              
                ) 
                
                  n 
                 
               
             
            
              α 
              ( 
              x 
              ) 
              − 
              β 
              ( 
              x 
              ) 
             
           
         
        , 
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        α 
        ( 
        x 
        
          ) 
          
            n 
           
         
        + 
        β 
        ( 
        x 
        
          ) 
          
            n 
           
         
        , 
       
     
    {\displaystyle F_{n}(x)={\frac {\alpha (x)^{n}-\beta (x)^{n}}{\alpha (x)-\beta (x)}},\,L_{n}(x)=\alpha (x)^{n}+\beta (x)^{n},} 
   
 where 
  
    
      
        α 
        ( 
        x 
        ) 
        = 
        
          
            
              x 
              + 
              
                
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  4 
                 
               
             
            2 
           
         
        , 
        β 
        ( 
        x 
        ) 
        = 
        
          
            
              x 
              − 
              
                
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  4 
                 
               
             
            2 
           
         
       
     
    {\displaystyle \alpha (x)={\frac {x+{\sqrt {x^{2}+4}}}{2}},\,\beta (x)={\frac {x-{\sqrt {x^{2}+4}}}{2}}} 
   
 are the solutions (in t ) of
  
    
      
        
          t 
          
            2 
           
         
        − 
        x 
        t 
        − 
        1 
        = 
        0. 
         
     
    {\displaystyle t^{2}-xt-1=0.\,} 
   
 For Lucas Polynomials n  > 0, we have
  
    
      
        
          L 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ⌊ 
            n 
            
              / 
             
            2 
            ⌋ 
           
         
        
          
            n 
            
              n 
              − 
              k 
             
           
         
        
          
            
              ( 
             
            
              
                n 
                − 
                k 
               
              k 
             
            
              ) 
             
           
         
        
          x 
          
            n 
            − 
            2 
            k 
           
         
        . 
       
     
    {\displaystyle L_{n}(x)=\sum _{k=0}^{\lfloor n/2\rfloor }{\frac {n}{n-k}}{\binom {n-k}{k}}x^{n-2k}.} 
   
 A relationship between the Fibonacci polynomials and the standard basis polynomials is given by[ 5] 
  
    
      
        
          x 
          
            n 
           
         
        = 
        
          F 
          
            n 
            + 
            1 
           
         
        ( 
        x 
        ) 
        + 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ⌊ 
            n 
            
              / 
             
            2 
            ⌋ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        
          [ 
          
            
              
                
                  ( 
                 
                
                  n 
                  k 
                 
                
                  ) 
                 
               
             
            − 
            
              
                
                  ( 
                 
                
                  n 
                  
                    k 
                    − 
                    1 
                   
                 
                
                  ) 
                 
               
             
           
          ] 
         
        
          F 
          
            n 
            + 
            1 
            − 
            2 
            k 
           
         
        ( 
        x 
        ) 
        . 
       
     
    {\displaystyle x^{n}=F_{n+1}(x)+\sum _{k=1}^{\lfloor n/2\rfloor }(-1)^{k}\left[{\binom {n}{k}}-{\binom {n}{k-1}}\right]F_{n+1-2k}(x).} 
   
 For example,
  
    
      
        
          x 
          
            4 
           
         
        = 
        
          F 
          
            5 
           
         
        ( 
        x 
        ) 
        − 
        3 
        
          F 
          
            3 
           
         
        ( 
        x 
        ) 
        + 
        2 
        
          F 
          
            1 
           
         
        ( 
        x 
        ) 
         
     
    {\displaystyle x^{4}=F_{5}(x)-3F_{3}(x)+2F_{1}(x)\,} 
   
 
  
    
      
        
          x 
          
            5 
           
         
        = 
        
          F 
          
            6 
           
         
        ( 
        x 
        ) 
        − 
        4 
        
          F 
          
            4 
           
         
        ( 
        x 
        ) 
        + 
        5 
        
          F 
          
            2 
           
         
        ( 
        x 
        ) 
         
     
    {\displaystyle x^{5}=F_{6}(x)-4F_{4}(x)+5F_{2}(x)\,} 
   
 
  
    
      
        
          x 
          
            6 
           
         
        = 
        
          F 
          
            7 
           
         
        ( 
        x 
        ) 
        − 
        5 
        
          F 
          
            5 
           
         
        ( 
        x 
        ) 
        + 
        9 
        
          F 
          
            3 
           
         
        ( 
        x 
        ) 
        − 
        5 
        
          F 
          
            1 
           
         
        ( 
        x 
        ) 
         
     
    {\displaystyle x^{6}=F_{7}(x)-5F_{5}(x)+9F_{3}(x)-5F_{1}(x)\,} 
   
 
  
    
      
        
          x 
          
            7 
           
         
        = 
        
          F 
          
            8 
           
         
        ( 
        x 
        ) 
        − 
        6 
        
          F 
          
            6 
           
         
        ( 
        x 
        ) 
        + 
        14 
        
          F 
          
            4 
           
         
        ( 
        x 
        ) 
        − 
        14 
        
          F 
          
            2 
           
         
        ( 
        x 
        ) 
         
     
    {\displaystyle x^{7}=F_{8}(x)-6F_{6}(x)+14F_{4}(x)-14F_{2}(x)\,} 
   
 
Combinatorial interpretation 
The coefficients of the Fibonacci polynomials can be read off from a left-justified Pascal's triangle following the diagonals (shown in red). The sums of the coefficients are the Fibonacci numbers. If F (n ,k ) is the coefficient of xk   in Fn  (x ), namely 
  
    
      
        
          F 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        F 
        ( 
        n 
        , 
        k 
        ) 
        
          x 
          
            k 
           
         
        , 
         
     
    {\displaystyle F_{n}(x)=\sum _{k=0}^{n}F(n,k)x^{k},\,} 
   
 then F (n ,k ) is the number of ways an n −1 by 1 rectangle can be tiled with 2 by 1 dominoes  and 1 by 1 squares so that exactly k  squares are used.[ 1] F (n ,k ) is the number of ways of writing n −1 as an ordered sum  involving only 1 and 2, so that 1 is used exactly k  times. For example F(6,3)=4 and 5 can be written in 4 ways, 1+1+1+2, 1+1+2+1, 1+2+1+1, 2+1+1+1, as a sum involving only 1 and 2 with 1 used 3 times. By counting the number of times 1 and 2 are both used in such a sum, it is evident that 
  
    
      
        F 
        ( 
        n 
        , 
        k 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    
                      
                        
                          ( 
                         
                        
                          
                            
                              
                                1 
                                2 
                               
                             
                            ( 
                            n 
                            + 
                            k 
                            − 
                            1 
                            ) 
                           
                          k 
                         
                        
                          ) 
                         
                       
                     
                   
                 
                
                  
                    if  
                   
                  n 
                  ≢ 
                  k 
                  
                    ( 
                    mod 
                    2 
                    ) 
                   
                  , 
                 
               
              
                
                  0 
                 
                
                  
                    else 
                   
                  . 
                 
               
             
             
         
       
     
    {\displaystyle F(n,k)={\begin{cases}\displaystyle {\binom {{\frac {1}{2}}(n+k-1)}{k}}&{\text{if }}n\not \equiv k{\pmod {2}},\\[12pt]0&{\text{else}}.\end{cases}}} 
   
 
This gives a way of reading the coefficients from Pascal's triangle  as shown on the right.
References 
Benjamin, Arthur T. ; Quinn, Jennifer J.  (2003). "Fibonacci and Lucas Polynomial". Proofs that Really Count: The Art of Combinatorial Proof . Dolciani Mathematical Expositions. Vol. 27. Mathematical Association of America . p. 141 . ISBN  978-0-88385-333-7 .Philippou, Andreas N. (2001) [1994], "Fibonacci polynomials" , Encyclopedia of Mathematics EMS Press  Philippou, Andreas N. (2001) [1994], "Lucas polynomials" , Encyclopedia of Mathematics EMS Press  Weisstein, Eric W.  "Lucas Polynomial" . MathWorld Jin, Z. On the Lucas polynomials and some of their new identities. Advances in Differential Equations 2018, 126 (2018). https://doi.org/10.1186/s13662-018-1527-9  
Further reading 
Hoggatt, V. E. ; Bicknell, Marjorie (1973). "Roots of Fibonacci polynomials". Fibonacci Quarterly 11 : 271– 274. ISSN  0015-0517 . MR  0332645 .Hoggatt, V. E.; Long, Calvin T. (1974). "Divisibility properties of generalized Fibonacci Polynomials". Fibonacci Quarterly 12 : 113. MR  0352034 . Ricci, Paolo Emilio (1995). "Generalized Lucas polynomials and Fibonacci polynomials". Rivista di Matematica della Università di Parma . V. Ser. 4 : 137– 146. MR  1395332 . Yuan, Yi; Zhang, Wenpeng (2002). "Some identities involving the Fibonacci Polynomials". Fibonacci Quarterly . 40  (4): 314. MR  1920571 . Cigler, Johann (2003). "q-Fibonacci polynomials". Fibonacci Quarterly  (41): 31– 40. MR  1962279 . 
External links