Fermat quotient
In number theory, the Fermat quotient of an integer a with respect to an odd prime p is defined as[1][2][3][4]
or
- .
This article is about the former; for the latter see p-derivation. The quotient is named after Pierre de Fermat.
If the base a is coprime to the exponent p then Fermat's little theorem says that qp(a) will be an integer. If the base a is also a generator of the multiplicative group of integers modulo p, then qp(a) will be a cyclic number, and p will be a full reptend prime.
Properties
From the definition, it is obvious that
In 1850, Gotthold Eisenstein proved that if a and b are both coprime to p, then:[5]
Eisenstein likened the first two of these congruences to properties of logarithms. These properties imply
In 1895, Dmitry Mirimanoff pointed out that an iteration of Eisenstein's rules gives the corollary:[6]
From this, it follows that:[7]
Lerch's formula
M. Lerch proved in 1905 that[8][9][10]
Here is the Wilson quotient.
Special values
Eisenstein discovered that the Fermat quotient with base 2 could be expressed in terms of the sum of the reciprocals modulo p of the numbers lying in the first half of the range {1, ..., p − 1}:
Later writers showed that the number of terms required in such a representation could be reduced from 1/2 to 1/4, 1/5, or even 1/6:
Eisenstein's series also has an increasingly complex connection to the Fermat quotients with other bases, the first few examples being:
Generalized Wieferich primes
If qp(a) ≡ 0 (mod p) then ap−1 ≡ 1 (mod p2). Primes for which this is true for a = 2 are called Wieferich primes. In general they are called Wieferich primes base a. Known solutions of qp(a) ≡ 0 (mod p) for small values of a are:[2]
- a - p (checked up to 5 × 1013) - OEIS sequence - 1 - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (All primes) - A000040 - 2 - 1093, 3511 - A001220 - 3 - 11, 1006003 - A014127 - 4 - 1093, 3511 - 5 - 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 - A123692 - 6 - 66161, 534851, 3152573 - A212583 - 7 - 5, 491531 - A123693 - 8 - 3, 1093, 3511 - 9 - 2, 11, 1006003 - 10 - 3, 487, 56598313 - A045616 - 11 - 71 - 12 - 2693, 123653 - A111027 - 13 - 2, 863, 1747591 - A128667 - 14 - 29, 353, 7596952219 - A234810 - 15 - 29131, 119327070011 - A242741 - 16 - 1093, 3511 - 17 - 2, 3, 46021, 48947, 478225523351 - A128668 - 18 - 5, 7, 37, 331, 33923, 1284043 - A244260 - 19 - 3, 7, 13, 43, 137, 63061489 - A090968 - 20 - 281, 46457, 9377747, 122959073 - A242982 - 21 - 2 - 22 - 13, 673, 1595813, 492366587, 9809862296159 - A298951 - 23 - 13, 2481757, 13703077, 15546404183, 2549536629329 - A128669 - 24 - 5, 25633 - 25 - 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 - 26 - 3, 5, 71, 486999673, 6695256707 - 27 - 11, 1006003 - 28 - 3, 19, 23 - 29 - 2 - 30 - 7, 160541, 94727075783 
For more information, see [17][18][19] and.[20]
The smallest solutions of qp(a) ≡ 0 (mod p) with a = n are:
- 2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3, ... (sequence A039951 in the OEIS)
A pair (p, r) of prime numbers such that qp(r) ≡ 0 (mod p) and qr(p) ≡ 0 (mod r) is called a Wieferich pair.
References
- ^ Weisstein, Eric W. "Fermat Quotient". MathWorld.
- ^ a b "The Prime Glossary: Fermat quotient". t5k.org. Retrieved 2024-03-16.
- ^ Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (1979), especially pp. 152, 159-161.
- ^ Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (2000), p. 216.
- ^ Gotthold Eisenstein, "Neue Gattung zahlentheoret. Funktionen, die v. 2 Elementen abhangen und durch gewisse lineare Funktional-Gleichungen definirt werden," Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuß. Akademie der Wissenschaften zu Berlin 1850, 36-42
- ^ Dmitry Mirimanoff, "Sur la congruence (rp − 1 − 1):p = qr (mod p)," Journal für die reine und angewandte Mathematik 115 (1895): 295-300
- ^ Paul Bachmann, Niedere Zahlentheorie, 2 vols. (Leipzig, 1902), 1:159.
- ^ Lerch, Mathias (1905). "Zur Theorie des Fermatschen Quotienten ". Mathematische Annalen. 60: 471–490. doi:10.1007/bf01561092. hdl:10338.dmlcz/120531. S2CID 123353041.
- ^ Sondow, Jonathan (2014). "Lerch quotients, Lerch primes, Fermat-Wilson quotients, and the Wieferich-non-Wilson primes 2, 3, 14771". arXiv:1110.3113 [math.NT].
- ^ Sondow, Jonathan; MacMillan, Kieren (2011). "Reducing the Erdős-Moser equation modulo and ". arXiv:1011.2154 [math.NT].
- ^ James Whitbread Lee Glaisher, "On the Residues of rp − 1 to Modulus p2, p3, etc.," Quarterly Journal of Pure and Applied Mathematics 32 (1901): 1-27.
- ^ Ladislav Skula, "A note on some relations among special sums of reciprocals modulo p," Mathematica Slovaca 58 (2008): 5-10.
- ^ Emma Lehmer, "On Congruences involving Bernoulli Numbers and the Quotients of Fermat and Wilson," Annals of Mathematics 39 (1938): 350–360, pp. 356ff.
- ^ Karl Dilcher and Ladislav Skula, "A New Criterion for the First Case of Fermat's Last Theorem," Mathematics of Computation 64 (1995): 363-392.
- ^ James Whitbread Lee Glaisher, "A General Congruence Theorem relating to the Bernoullian Function," Proceedings of the London Mathematical Society 33 (1900-1901): 27-56, at pp. 49-50.
- ^ Mathias Lerch, "Zur Theorie des Fermatschen Quotienten…," Mathematische Annalen 60 (1905): 471-490.
- ^ Wieferich primes to bases up to 1052
- ^ "Wieferich.txt primes to bases up to 10125". Archived from the original on 2014-07-29. Retrieved 2014-07-22.
- ^ Wieferich prime in prime bases up to 1000 Archived 2014-08-09 at the Wayback Machine
- ^ Wieferich primes with level >= 3
External links
- Gottfried Helms. Fermat-/Euler-quotients (ap-1 – 1)/pk with arbitrary k.
- Richard Fischer. Fermat quotients B^(P-1) == 1 (mod P^2).