Domain coloring  plot of ϕ on the complex plane In mathematics , the Euler function  is given by
  
    
      
        ϕ 
        ( 
        q 
        ) 
        = 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        ( 
        1 
        − 
        
          q 
          
            k 
           
         
        ) 
        , 
        
          | 
         
        q 
        
          | 
         
        < 
        1. 
       
     
    {\displaystyle \phi (q)=\prod _{k=1}^{\infty }(1-q^{k}),\quad |q|<1.} 
   
 Named after Leonhard Euler , it is a model example of a q -seriescombinatorics  and complex analysis .
Properties 
The coefficient  
  
    
      
        p 
        ( 
        k 
        ) 
       
     
    {\displaystyle p(k)} 
   
 formal power series  expansion for 
  
    
      
        1 
        
          / 
         
        ϕ 
        ( 
        q 
        ) 
       
     
    {\displaystyle 1/\phi (q)} 
   
 partitions  of k .  That is,
  
    
      
        
          
            1 
            
              ϕ 
              ( 
              q 
              ) 
             
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        p 
        ( 
        k 
        ) 
        
          q 
          
            k 
           
         
       
     
    {\displaystyle {\frac {1}{\phi (q)}}=\sum _{k=0}^{\infty }p(k)q^{k}} 
   
 where 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 partition function .
The Euler identity , also known as the Pentagonal number theorem , is
  
    
      
        ϕ 
        ( 
        q 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            − 
            ∞ 
           
          
            ∞ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          q 
          
            ( 
            3 
            
              n 
              
                2 
               
             
            − 
            n 
            ) 
            
              / 
             
            2 
           
         
        . 
       
     
    {\displaystyle \phi (q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(3n^{2}-n)/2}.} 
   
 
  
    
      
        ( 
        3 
        
          n 
          
            2 
           
         
        − 
        n 
        ) 
        
          / 
         
        2 
       
     
    {\displaystyle (3n^{2}-n)/2} 
   
 pentagonal number .
The Euler function is related to the Dedekind eta function  as
  
    
      
        ϕ 
        ( 
        
          e 
          
            2 
            π 
            i 
            τ 
           
         
        ) 
        = 
        
          e 
          
            − 
            π 
            i 
            τ 
            
              / 
             
            12 
           
         
        η 
        ( 
        τ 
        ) 
        . 
       
     
    {\displaystyle \phi (e^{2\pi i\tau })=e^{-\pi i\tau /12}\eta (\tau ).} 
   
 The Euler function may be expressed as a q -Pochhammer symbol
  
    
      
        ϕ 
        ( 
        q 
        ) 
        = 
        ( 
        q 
        ; 
        q 
        
          ) 
          
            ∞ 
           
         
        . 
       
     
    {\displaystyle \phi (q)=(q;q)_{\infty }.} 
   
 The logarithm  of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q  = 0, yielding
  
    
      
        ln 
         
        ( 
        ϕ 
        ( 
        q 
        ) 
        ) 
        = 
        − 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            n 
           
         
        
          
            
              q 
              
                n 
               
             
            
              1 
              − 
              
                q 
                
                  n 
                 
               
             
           
         
        , 
       
     
    {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {1}{n}}\,{\frac {q^{n}}{1-q^{n}}},} 
   
 which is a Lambert series  with coefficients -1/n . The logarithm of the Euler function may therefore be expressed as
  
    
      
        ln 
         
        ( 
        ϕ 
        ( 
        q 
        ) 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          b 
          
            n 
           
         
        
          q 
          
            n 
           
         
       
     
    {\displaystyle \ln(\phi (q))=\sum _{n=1}^{\infty }b_{n}q^{n}} 
   
 where 
  
    
      
        
          b 
          
            n 
           
         
        = 
        − 
        
          ∑ 
          
            d 
            
              | 
             
            n 
           
         
        
          
            1 
            d 
           
         
        = 
       
     
    {\displaystyle b_{n}=-\sum _{d|n}{\frac {1}{d}}=} 
   
 OEIS  A000203 )
On account of the identity 
  
    
      
        σ 
        ( 
        n 
        ) 
        = 
        
          ∑ 
          
            d 
            
              | 
             
            n 
           
         
        d 
        = 
        
          ∑ 
          
            d 
            
              | 
             
            n 
           
         
        
          
            n 
            d 
           
         
       
     
    {\displaystyle \sigma (n)=\sum _{d|n}d=\sum _{d|n}{\frac {n}{d}}} 
   
 
  
    
      
        σ 
        ( 
        n 
        ) 
       
     
    {\displaystyle \sigma (n)} 
   
 sum-of-divisors function , this may also be written as
  
    
      
        ln 
         
        ( 
        ϕ 
        ( 
        q 
        ) 
        ) 
        = 
        − 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              σ 
              ( 
              n 
              ) 
             
            n 
           
         
          
        
          q 
          
            n 
           
         
       
     
    {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {\sigma (n)}{n}}\ q^{n}} 
   
 Also if 
  
    
      
        a 
        , 
        b 
        ∈ 
        
          
            R 
           
          
            + 
           
         
       
     
    {\displaystyle a,b\in \mathbb {R} ^{+}} 
   
 
  
    
      
        a 
        b 
        = 
        
          π 
          
            2 
           
         
       
     
    {\displaystyle ab=\pi ^{2}} 
   
 [ 1] 
  
    
      
        
          a 
          
            1 
            
              / 
             
            4 
           
         
        
          e 
          
            − 
            a 
            
              / 
             
            12 
           
         
        ϕ 
        ( 
        
          e 
          
            − 
            2 
            a 
           
         
        ) 
        = 
        
          b 
          
            1 
            
              / 
             
            4 
           
         
        
          e 
          
            − 
            b 
            
              / 
             
            12 
           
         
        ϕ 
        ( 
        
          e 
          
            − 
            2 
            b 
           
         
        ) 
        . 
       
     
    {\displaystyle a^{1/4}e^{-a/12}\phi (e^{-2a})=b^{1/4}e^{-b/12}\phi (e^{-2b}).} 
   
 
Special values 
The next identities come from Ramanujan 's Notebooks:[ 2] 
  
    
      
        ϕ 
        ( 
        
          e 
          
            − 
            π 
           
         
        ) 
        = 
        
          
            
              
                e 
                
                  π 
                  
                    / 
                   
                  24 
                 
               
              Γ 
              
                ( 
                
                  
                    1 
                    4 
                   
                 
                ) 
               
             
            
              
                2 
                
                  7 
                  
                    / 
                   
                  8 
                 
               
              
                π 
                
                  3 
                  
                    / 
                   
                  4 
                 
               
             
           
         
       
     
    {\displaystyle \phi (e^{-\pi })={\frac {e^{\pi /24}\Gamma \left({\frac {1}{4}}\right)}{2^{7/8}\pi ^{3/4}}}} 
   
 
  
    
      
        ϕ 
        ( 
        
          e 
          
            − 
            2 
            π 
           
         
        ) 
        = 
        
          
            
              
                e 
                
                  π 
                  
                    / 
                   
                  12 
                 
               
              Γ 
              
                ( 
                
                  
                    1 
                    4 
                   
                 
                ) 
               
             
            
              2 
              
                π 
                
                  3 
                  
                    / 
                   
                  4 
                 
               
             
           
         
       
     
    {\displaystyle \phi (e^{-2\pi })={\frac {e^{\pi /12}\Gamma \left({\frac {1}{4}}\right)}{2\pi ^{3/4}}}} 
   
 
  
    
      
        ϕ 
        ( 
        
          e 
          
            − 
            4 
            π 
           
         
        ) 
        = 
        
          
            
              
                e 
                
                  π 
                  
                    / 
                   
                  6 
                 
               
              Γ 
              
                ( 
                
                  
                    1 
                    4 
                   
                 
                ) 
               
             
            
              
                2 
                
                  
                    11 
                   
                  
                    / 
                   
                  8 
                 
               
              
                π 
                
                  3 
                  
                    / 
                   
                  4 
                 
               
             
           
         
       
     
    {\displaystyle \phi (e^{-4\pi })={\frac {e^{\pi /6}\Gamma \left({\frac {1}{4}}\right)}{2^{{11}/8}\pi ^{3/4}}}} 
   
 
  
    
      
        ϕ 
        ( 
        
          e 
          
            − 
            8 
            π 
           
         
        ) 
        = 
        
          
            
              
                e 
                
                  π 
                  
                    / 
                   
                  3 
                 
               
              Γ 
              
                ( 
                
                  
                    1 
                    4 
                   
                 
                ) 
               
             
            
              
                2 
                
                  29 
                  
                    / 
                   
                  16 
                 
               
              
                π 
                
                  3 
                  
                    / 
                   
                  4 
                 
               
             
           
         
        ( 
        
          
            2 
           
         
        − 
        1 
        
          ) 
          
            1 
            
              / 
             
            4 
           
         
       
     
    {\displaystyle \phi (e^{-8\pi })={\frac {e^{\pi /3}\Gamma \left({\frac {1}{4}}\right)}{2^{29/16}\pi ^{3/4}}}({\sqrt {2}}-1)^{1/4}} 
   
 Using the Pentagonal number theorem , exchanging sum and integral , and then invoking complex-analytic methods, one derives[ 3] 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        ϕ 
        ( 
        q 
        ) 
        
          d 
         
        q 
        = 
        
          
            
              8 
              
                
                  
                    3 
                    23 
                   
                 
               
              π 
              sinh 
               
              
                ( 
                
                  
                    
                      
                        
                          23 
                         
                       
                      π 
                     
                    6 
                   
                 
                ) 
               
             
            
              2 
              cosh 
               
              
                ( 
                
                  
                    
                      
                        
                          23 
                         
                       
                      π 
                     
                    3 
                   
                 
                ) 
               
              − 
              1 
             
           
         
        . 
       
     
    {\displaystyle \int _{0}^{1}\phi (q)\,\mathrm {d} q={\frac {8{\sqrt {\frac {3}{23}}}\pi \sinh \left({\frac {{\sqrt {23}}\pi }{6}}\right)}{2\cosh \left({\frac {{\sqrt {23}}\pi }{3}}\right)-1}}.} 
   
 
References 
Category