The lemniscate sine (red) and lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric sine y  = sin(πx /ϖ ) In mathematics , the lemniscate elliptic functions  are elliptic functions  related to the arc length of the lemniscate of Bernoulli . They were first studied by Giulio Fagnano  in 1718 and later by Leonhard Euler  and Carl Friedrich Gauss , among others.[ 1] 
The lemniscate sine  and lemniscate cosine  functions, usually written with the symbols sl  and cl  (sometimes the symbols sinlem  and coslem  or sin lemn  and cos lemn  are used instead),[ 2] trigonometric functions  sine and cosine. While the trigonometric sine relates the arc length to the  chord length in a unit-diameter  circle  
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        x 
        , 
       
     
    {\displaystyle x^{2}+y^{2}=x,} 
   
 [ 3] 
  
    
      
        
          
            ( 
           
         
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        
          
            ) 
           
         
        
          
           
          
            2 
           
         
        = 
        
          x 
          
            2 
           
         
        − 
        
          y 
          
            2 
           
         
        . 
       
     
    {\displaystyle {\bigl (}x^{2}+y^{2}{\bigr )}{}^{2}=x^{2}-y^{2}.} 
   
 
The lemniscate functions have periods related to a number 
  
    
      
        ϖ 
        = 
       
     
    {\displaystyle \varpi =} 
   
 lemniscate constant , the ratio of a lemniscate's perimeter to its diameter. This number is a quartic  analog of the (quadratic ) 
  
    
      
        π 
        = 
       
     
    {\displaystyle \pi =} 
   
 ratio of perimeter to diameter of a circle .
As complex functions , sl  and cl  have a square  period lattice  (a multiple of the Gaussian integers ) with fundamental periods  
  
    
      
        { 
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
        , 
        ( 
        1 
        − 
        i 
        ) 
        ϖ 
        } 
        , 
       
     
    {\displaystyle \{(1+i)\varpi ,(1-i)\varpi \},} 
   
 [ 4] Jacobi elliptic functions  on that lattice, 
  
    
      
        sl 
         
        z 
        = 
        sn 
         
        ( 
        z 
        ; 
        − 
        1 
        ) 
        , 
       
     
    {\displaystyle \operatorname {sl} z=\operatorname {sn} (z;-1),} 
   
 
  
    
      
        cl 
         
        z 
        = 
        cd 
         
        ( 
        z 
        ; 
        − 
        1 
        ) 
       
     
    {\displaystyle \operatorname {cl} z=\operatorname {cd} (z;-1)} 
   
 
Similarly, the hyperbolic lemniscate sine  slh  and hyperbolic lemniscate cosine  clh  have a square period lattice with fundamental periods 
  
    
      
        
          
            { 
           
         
        
          
            2 
           
         
        ϖ 
        , 
        
          
            2 
           
         
        ϖ 
        i 
        
          
            } 
           
         
        . 
       
     
    {\displaystyle {\bigl \{}{\sqrt {2}}\varpi ,{\sqrt {2}}\varpi i{\bigr \}}.} 
   
 
The lemniscate functions and the hyperbolic lemniscate functions are related  to the Weierstrass elliptic function  
  
    
      
        ℘ 
        ( 
        z 
        ; 
        a 
        , 
        0 
        ) 
       
     
    {\displaystyle \wp (z;a,0)} 
   
 
Lemniscate sine and cosine functions 
Definitions 
The lemniscate functions sl  and cl  can be defined as the solution to the initial value problem :[ 5] 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              z 
             
           
         
        sl 
         
        z 
        = 
        
          
            ( 
           
         
        1 
        + 
        
          sl 
          
            2 
           
         
         
        z 
        
          
            ) 
           
         
        cl 
         
        z 
        , 
          
        
          
            
              d 
             
            
              
                d 
               
              z 
             
           
         
        cl 
         
        z 
        = 
        − 
        
          
            ( 
           
         
        1 
        + 
        
          cl 
          
            2 
           
         
         
        z 
        
          
            ) 
           
         
        sl 
         
        z 
        , 
          
        sl 
         
        0 
        = 
        0 
        , 
          
        cl 
         
        0 
        = 
        1 
        , 
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {sl} z={\bigl (}1+\operatorname {sl} ^{2}z{\bigr )}\operatorname {cl} z,\ {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {cl} z=-{\bigl (}1+\operatorname {cl} ^{2}z{\bigr )}\operatorname {sl} z,\ \operatorname {sl} 0=0,\ \operatorname {cl} 0=1,} 
   
 or equivalently as the inverses  of an elliptic integral , the Schwarz–Christoffel map  from the complex unit disk  to a square with corners 
  
    
      
        
          
            { 
           
         
        
          
            
              1 
              2 
             
           
         
        ϖ 
        , 
        
          
            
              1 
              2 
             
           
         
        ϖ 
        i 
        , 
        − 
        
          
            
              1 
              2 
             
           
         
        ϖ 
        , 
        − 
        
          
            
              1 
              2 
             
           
         
        ϖ 
        i 
        
          
            } 
           
         
        : 
       
     
    {\displaystyle {\big \{}{\tfrac {1}{2}}\varpi ,{\tfrac {1}{2}}\varpi i,-{\tfrac {1}{2}}\varpi ,-{\tfrac {1}{2}}\varpi i{\big \}}\colon } 
   
 [ 6] 
  
    
      
        z 
        = 
        
          ∫ 
          
            0 
           
          
            sl 
             
            z 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        = 
        
          ∫ 
          
            cl 
             
            z 
           
          
            1 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        . 
       
     
    {\displaystyle z=\int _{0}^{\operatorname {sl} z}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=\int _{\operatorname {cl} z}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}.} 
   
 Beyond that square, the functions can be extended to the complex plane  via analytic continuation  by  successive reflections .
By comparison, the circular sine and cosine can be defined as the solution to the initial value problem:
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              z 
             
           
         
        sin 
         
        z 
        = 
        cos 
         
        z 
        , 
          
        
          
            
              d 
             
            
              
                d 
               
              z 
             
           
         
        cos 
         
        z 
        = 
        − 
        sin 
         
        z 
        , 
          
        sin 
         
        0 
        = 
        0 
        , 
          
        cos 
         
        0 
        = 
        1 
        , 
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\sin z=\cos z,\ {\frac {\mathrm {d} }{\mathrm {d} z}}\cos z=-\sin z,\ \sin 0=0,\ \cos 0=1,} 
   
 or as inverses of a map from the upper half-plane  to a half-infinite strip with real part between 
  
    
      
        − 
        
          
            
              1 
              2 
             
           
         
        π 
        , 
        
          
            
              1 
              2 
             
           
         
        π 
       
     
    {\displaystyle -{\tfrac {1}{2}}\pi ,{\tfrac {1}{2}}\pi } 
   
 
  
    
      
        z 
        = 
        
          ∫ 
          
            0 
           
          
            sin 
             
            z 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  2 
                 
               
             
           
         
        = 
        
          ∫ 
          
            cos 
             
            z 
           
          
            1 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle z=\int _{0}^{\sin z}{\frac {\mathrm {d} t}{\sqrt {1-t^{2}}}}=\int _{\cos z}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{2}}}}.} 
   
 
Relation to the lemniscate constant 
The lemniscate sine function and hyperbolic lemniscate sine functions are defined as inverses of elliptic integrals. The complete integrals are related to the lemniscate constant ϖ . The lemniscate functions have minimal real period 
  
    
      
        2 
        ϖ 
       
     
    {\displaystyle 2\varpi } 
   
  , minimal imaginary  period 
  
    
      
        2 
        ϖ 
        i 
       
     
    {\displaystyle 2\varpi i} 
   
   and fundamental complex periods 
  
    
      
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1+i)\varpi } 
   
 
  
    
      
        ( 
        1 
        − 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1-i)\varpi } 
   
 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
   called the lemniscate constant [ 7] 
  
    
      
        ϖ 
        = 
        2 
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        = 
        2.62205 
        … 
       
     
    {\displaystyle \varpi =2\int _{0}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=2.62205\ldots } 
   
 The lemniscate functions satisfy the basic relation 
  
    
      
        cl 
         
        z 
        = 
        
          sl 
         
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        ϖ 
        − 
        z 
        
          
            ) 
           
         
        , 
       
     
    {\displaystyle \operatorname {cl} z={\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\varpi -z{\bigr )},} 
   
 
  
    
      
        cos 
         
        z 
        = 
        
          sin 
         
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        π 
        − 
        z 
        
          
            ) 
           
         
        . 
       
     
    {\displaystyle \cos z={\sin }{\bigl (}{\tfrac {1}{2}}\pi -z{\bigr )}.} 
   
 
The lemniscate constant 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
   is a close analog of the circle constant 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
   , and many identities involving 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
   have analogues involving 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
  , as identities involving the trigonometric functions  have analogues involving the lemniscate functions. For example, Viète's formula  for 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
   can be written:
  
    
      
        
          
            2 
            π 
           
         
        = 
        
          
            
              1 
              2 
             
           
         
        ⋅ 
        
          
            
              
                1 
                2 
               
             
            + 
            
              
                1 
                2 
               
             
            
              
                
                  1 
                  2 
                 
               
             
           
         
        ⋅ 
        
          
            
              
                1 
                2 
               
             
            + 
            
              
                1 
                2 
               
             
            
              
                
                  
                    1 
                    2 
                   
                 
                + 
                
                  
                    1 
                    2 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
               
             
           
         
        ⋯ 
       
     
    {\displaystyle {\frac {2}{\pi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}}}\cdots } 
   
 
An analogous formula for 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
   is:[ 8] 
  
    
      
        
          
            2 
            ϖ 
           
         
        = 
        
          
            
              1 
              2 
             
           
         
        ⋅ 
        
          
            
              
                1 
                2 
               
             
            + 
            
              
                1 
                2 
               
             
            
              
                / 
               
             
            
              
                
                  1 
                  2 
                 
               
             
           
         
        ⋅ 
        
          
            
              
                1 
                2 
               
             
            + 
            
              
                1 
                2 
               
             
            
              
                / 
               
             
            
              
                
                  
                    1 
                    2 
                   
                 
                + 
                
                  
                    1 
                    2 
                   
                 
                
                  
                    / 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
               
             
           
         
        ⋯ 
       
     
    {\displaystyle {\frac {2}{\varpi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\Bigg /}\!{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}}}\cdots } 
   
 
The Machin formula  for 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
   is 
  
    
      
        
          
            
              1 
              4 
             
           
         
        π 
        = 
        4 
        arctan 
         
        
          
            
              1 
              5 
             
           
         
        − 
        arctan 
         
        
          
            
              1 
              239 
             
           
         
        , 
       
     
    {\textstyle {\tfrac {1}{4}}\pi =4\arctan {\tfrac {1}{5}}-\arctan {\tfrac {1}{239}},} 
   
 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
   can be developed using trigonometric angle sum identities, e.g. Euler's formula 
  
    
      
        
          
            
              1 
              4 
             
           
         
        π 
        = 
        arctan 
         
        
          
            
              1 
              2 
             
           
         
        + 
        arctan 
         
        
          
            
              1 
              3 
             
           
         
       
     
    {\textstyle {\tfrac {1}{4}}\pi =\arctan {\tfrac {1}{2}}+\arctan {\tfrac {1}{3}}} 
   
 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
  , including the following found by Gauss: 
  
    
      
        
          
            
              1 
              2 
             
           
         
        ϖ 
        = 
        2 
        arcsl 
         
        
          
            
              1 
              2 
             
           
         
        + 
        arcsl 
         
        
          
            
              7 
              23 
             
           
         
        . 
       
     
    {\displaystyle {\tfrac {1}{2}}\varpi =2\operatorname {arcsl} {\tfrac {1}{2}}+\operatorname {arcsl} {\tfrac {7}{23}}.} 
   
 [ 9] 
The lemniscate and circle constants were found by Gauss to be related to each-other by the arithmetic-geometric mean  
  
    
      
        M 
       
     
    {\displaystyle M} 
   
  :[ 10] 
  
    
      
        
          
            π 
            ϖ 
           
         
        = 
        M 
        
          
            ( 
            
              1 
              , 
              
                
                  2 
                 
               
                
             
            ) 
           
         
       
     
    {\displaystyle {\frac {\pi }{\varpi }}=M{\left(1,{\sqrt {2}}\!~\right)}} 
   
 
Argument identities 
  
    
      
        sl 
       
     
    {\displaystyle \operatorname {sl} } 
   
 [ 11] 
  
    
      
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1+i)\varpi } 
   
 
  
    
      
        ( 
        1 
        − 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1-i)\varpi } 
   
 The lemniscate functions cl  and sl  are even and odd functions , respectively,
  
    
      
        
          
            
              
                cl 
                 
                ( 
                − 
                z 
                ) 
               
              
                = 
                cl 
                 
                z 
               
             
            
              
                sl 
                 
                ( 
                − 
                z 
                ) 
               
              
                = 
                − 
                sl 
                 
                z 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {cl} (-z)&=\operatorname {cl} z\\[6mu]\operatorname {sl} (-z)&=-\operatorname {sl} z\end{aligned}}} 
   
 At translations of 
  
    
      
        
          
            
              1 
              2 
             
           
         
        ϖ 
        , 
       
     
    {\displaystyle {\tfrac {1}{2}}\varpi ,} 
   
 cl  and sl  are exchanged, and at translations of 
  
    
      
        
          
            
              1 
              2 
             
           
         
        i 
        ϖ 
       
     
    {\displaystyle {\tfrac {1}{2}}i\varpi } 
   
 reciprocated :[ 12] 
  
    
      
        
          
            
              
                
                  cl 
                 
                
                  
                    ( 
                   
                 
                z 
                ± 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
               
              
                = 
                ∓ 
                sl 
                 
                z 
                , 
               
              
                
                  cl 
                 
                
                  
                    ( 
                   
                 
                z 
                ± 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                i 
                ϖ 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      ∓ 
                      i 
                     
                    
                      sl 
                       
                      z 
                     
                   
                 
               
             
            
              
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                z 
                ± 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
               
              
                = 
                ± 
                cl 
                 
                z 
                , 
               
              
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                z 
                ± 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                i 
                ϖ 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      ± 
                      i 
                     
                    
                      cl 
                       
                      z 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\operatorname {cl} }{\bigl (}z\pm {\tfrac {1}{2}}\varpi {\bigr )}&=\mp \operatorname {sl} z,&{\operatorname {cl} }{\bigl (}z\pm {\tfrac {1}{2}}i\varpi {\bigr )}&={\frac {\mp i}{\operatorname {sl} z}}\\[6mu]{\operatorname {sl} }{\bigl (}z\pm {\tfrac {1}{2}}\varpi {\bigr )}&=\pm \operatorname {cl} z,&{\operatorname {sl} }{\bigl (}z\pm {\tfrac {1}{2}}i\varpi {\bigr )}&={\frac {\pm i}{\operatorname {cl} z}}\end{aligned}}} 
   
 Doubling these to translations by a unit -Gaussian-integer multiple of 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
 
  
    
      
        ± 
        ϖ 
       
     
    {\displaystyle \pm \varpi } 
   
 
  
    
      
        ± 
        i 
        ϖ 
       
     
    {\displaystyle \pm i\varpi } 
   
 involution :
  
    
      
        
          
            
              
                cl 
                 
                ( 
                z 
                + 
                ϖ 
                ) 
               
              
                = 
                cl 
                 
                ( 
                z 
                + 
                i 
                ϖ 
                ) 
                = 
                − 
                cl 
                 
                z 
               
             
            
              
                sl 
                 
                ( 
                z 
                + 
                ϖ 
                ) 
               
              
                = 
                sl 
                 
                ( 
                z 
                + 
                i 
                ϖ 
                ) 
                = 
                − 
                sl 
                 
                z 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {cl} (z+\varpi )&=\operatorname {cl} (z+i\varpi )=-\operatorname {cl} z\\[4mu]\operatorname {sl} (z+\varpi )&=\operatorname {sl} (z+i\varpi )=-\operatorname {sl} z\end{aligned}}} 
   
 As a result, both functions are invariant under translation by an even-Gaussian-integer  multiple of 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
 [ 13] 
  
    
      
        ( 
        a 
        + 
        b 
        i 
        ) 
        ϖ 
        , 
       
     
    {\displaystyle (a+bi)\varpi ,} 
   
 
  
    
      
        a 
        + 
        b 
        = 
        2 
        k 
       
     
    {\displaystyle a+b=2k} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
  , 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
  , and  
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  .
  
    
      
        
          
            
              
                
                  cl 
                 
                
                  
                    ( 
                   
                 
                z 
                + 
                ( 
                1 
                + 
                i 
                ) 
                ϖ 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  cl 
                 
                
                  
                    ( 
                   
                 
                z 
                + 
                ( 
                1 
                − 
                i 
                ) 
                ϖ 
                
                  
                    ) 
                   
                 
                = 
                cl 
                 
                z 
               
             
            
              
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                z 
                + 
                ( 
                1 
                + 
                i 
                ) 
                ϖ 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                z 
                + 
                ( 
                1 
                − 
                i 
                ) 
                ϖ 
                
                  
                    ) 
                   
                 
                = 
                sl 
                 
                z 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\operatorname {cl} }{\bigl (}z+(1+i)\varpi {\bigr )}&={\operatorname {cl} }{\bigl (}z+(1-i)\varpi {\bigr )}=\operatorname {cl} z\\[4mu]{\operatorname {sl} }{\bigl (}z+(1+i)\varpi {\bigr )}&={\operatorname {sl} }{\bigl (}z+(1-i)\varpi {\bigr )}=\operatorname {sl} z\end{aligned}}} 
   
 This makes them elliptic functions  (doubly periodic meromorphic functions  in the complex plane) with a diagonal square  period lattice  of fundamental periods 
  
    
      
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1+i)\varpi } 
   
 
  
    
      
        ( 
        1 
        − 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1-i)\varpi } 
   
 [ 14] 
Reflections and quarter-turn rotations of lemniscate function arguments have simple expressions:
  
    
      
        
          
            
              
                cl 
                 
                
                  
                    
                      z 
                      ¯ 
                     
                   
                 
               
              
                = 
                
                  
                    
                      cl 
                       
                      z 
                     
                    ¯ 
                   
                 
               
             
            
              
                sl 
                 
                
                  
                    
                      z 
                      ¯ 
                     
                   
                 
               
              
                = 
                
                  
                    
                      sl 
                       
                      z 
                     
                    ¯ 
                   
                 
               
             
            
              
                cl 
                 
                i 
                z 
               
              
                = 
                
                  
                    1 
                    
                      cl 
                       
                      z 
                     
                   
                 
               
             
            
              
                sl 
                 
                i 
                z 
               
              
                = 
                i 
                sl 
                 
                z 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {cl} {\bar {z}}&={\overline {\operatorname {cl} z}}\\[6mu]\operatorname {sl} {\bar {z}}&={\overline {\operatorname {sl} z}}\\[4mu]\operatorname {cl} iz&={\frac {1}{\operatorname {cl} z}}\\[6mu]\operatorname {sl} iz&=i\operatorname {sl} z\end{aligned}}} 
   
 The sl  function has simple zeros  at Gaussian integer multiples of 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
  , complex numbers of the form 
  
    
      
        a 
        ϖ 
        + 
        b 
        ϖ 
        i 
       
     
    {\displaystyle a\varpi +b\varpi i} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
   and 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
  . It has simple poles  at Gaussian half-integer  multiples of 
  
    
      
        ϖ 
       
     
    {\displaystyle \varpi } 
   
  , complex numbers of the form 
  
    
      
        
          
            ( 
           
         
        a 
        + 
        
          
            
              1 
              2 
             
           
         
        
          
            ) 
           
         
        ϖ 
        + 
        
          
            ( 
           
         
        b 
        + 
        
          
            
              1 
              2 
             
           
         
        
          
            ) 
           
         
        ϖ 
        i 
       
     
    {\displaystyle {\bigl (}a+{\tfrac {1}{2}}{\bigr )}\varpi +{\bigl (}b+{\tfrac {1}{2}}{\bigr )}\varpi i} 
   
 residues  
  
    
      
        ( 
        − 
        1 
        
          ) 
          
            a 
            − 
            b 
            + 
            1 
           
         
        i 
       
     
    {\displaystyle (-1)^{a-b+1}i} 
   
 cl  function is reflected and offset from the sl  function, 
  
    
      
        cl 
         
        z 
        = 
        
          sl 
         
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        ϖ 
        − 
        z 
        
          
            ) 
           
         
       
     
    {\displaystyle \operatorname {cl} z={\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\varpi -z{\bigr )}} 
   
 
  
    
      
        
          
            ( 
           
         
        a 
        + 
        
          
            
              1 
              2 
             
           
         
        
          
            ) 
           
         
        ϖ 
        + 
        b 
        ϖ 
        i 
       
     
    {\displaystyle {\bigl (}a+{\tfrac {1}{2}}{\bigr )}\varpi +b\varpi i} 
   
 
  
    
      
        a 
        ϖ 
        + 
        
          
            ( 
           
         
        b 
        + 
        
          
            
              1 
              2 
             
           
         
        
          
            ) 
           
         
        ϖ 
        i 
        , 
       
     
    {\displaystyle a\varpi +{\bigl (}b+{\tfrac {1}{2}}{\bigr )}\varpi i,} 
   
 
  
    
      
        ( 
        − 
        1 
        
          ) 
          
            a 
            − 
            b 
           
         
        i 
        . 
       
     
    {\displaystyle (-1)^{a-b}i.} 
   
 
Also
  
    
      
        sl 
         
        z 
        = 
        sl 
         
        w 
        ↔ 
        z 
        = 
        ( 
        − 
        1 
        
          ) 
          
            m 
            + 
            n 
           
         
        w 
        + 
        ( 
        m 
        + 
        n 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle \operatorname {sl} z=\operatorname {sl} w\leftrightarrow z=(-1)^{m+n}w+(m+ni)\varpi } 
   
 for some 
  
    
      
        m 
        , 
        n 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle m,n\in \mathbb {Z} } 
   
 
  
    
      
        sl 
         
        ( 
        ( 
        1 
        ± 
        i 
        ) 
        z 
        ) 
        = 
        ( 
        1 
        ± 
        i 
        ) 
        
          
            
              sl 
               
              z 
             
            
              
                sl 
                ′ 
               
               
              z 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {sl} ((1\pm i)z)=(1\pm i){\frac {\operatorname {sl} z}{\operatorname {sl} 'z}}.} 
   
 The last formula is a special case of complex multiplication . Analogous formulas can be given for 
  
    
      
        sl 
         
        ( 
        ( 
        n 
        + 
        m 
        i 
        ) 
        z 
        ) 
       
     
    {\displaystyle \operatorname {sl} ((n+mi)z)} 
   
 
  
    
      
        n 
        + 
        m 
        i 
       
     
    {\displaystyle n+mi} 
   
 
  
    
      
        sl 
       
     
    {\displaystyle \operatorname {sl} } 
   
 
  
    
      
        
          Z 
         
        [ 
        i 
        ] 
       
     
    {\displaystyle \mathbb {Z} [i]} 
   
 [ 15] 
There are also infinite series reflecting the distribution of the zeros and poles of sl :[ 16] [ 17] 
  
    
      
        
          
            1 
            
              sl 
               
              z 
             
           
         
        = 
        
          ∑ 
          
            ( 
            n 
            , 
            k 
            ) 
            ∈ 
            
              
                Z 
               
              
                2 
               
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                  + 
                  k 
                 
               
             
            
              z 
              + 
              n 
              ϖ 
              + 
              k 
              ϖ 
              i 
             
           
         
       
     
    {\displaystyle {\frac {1}{\operatorname {sl} z}}=\sum _{(n,k)\in \mathbb {Z} ^{2}}{\frac {(-1)^{n+k}}{z+n\varpi +k\varpi i}}} 
   
 
  
    
      
        sl 
         
        z 
        = 
        − 
        i 
        
          ∑ 
          
            ( 
            n 
            , 
            k 
            ) 
            ∈ 
            
              
                Z 
               
              
                2 
               
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                  + 
                  k 
                 
               
             
            
              z 
              + 
              ( 
              n 
              + 
              1 
              
                / 
               
              2 
              ) 
              ϖ 
              + 
              ( 
              k 
              + 
              1 
              
                / 
               
              2 
              ) 
              ϖ 
              i 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {sl} z=-i\sum _{(n,k)\in \mathbb {Z} ^{2}}{\frac {(-1)^{n+k}}{z+(n+1/2)\varpi +(k+1/2)\varpi i}}.} 
   
 
Pythagorean-like identity 
Curves x ² ⊕ y ² = a a . Negative a a a  = ±1a  = ∞ The lemniscate functions satisfy a Pythagorean -like identity:
  
    
      
        
          c 
          
            l 
            
              2 
             
           
         
         
        z 
        + 
        
          s 
          
            l 
            
              2 
             
           
         
         
        z 
        + 
        
          c 
          
            l 
            
              2 
             
           
         
         
        z 
        
          s 
          
            l 
            
              2 
             
           
         
         
        z 
        = 
        1 
       
     
    {\displaystyle \operatorname {cl^{2}} z+\operatorname {sl^{2}} z+\operatorname {cl^{2}} z\,\operatorname {sl^{2}} z=1} 
   
 As a result, the parametric equation 
  
    
      
        ( 
        x 
        , 
        y 
        ) 
        = 
        ( 
        cl 
         
        t 
        , 
        sl 
         
        t 
        ) 
       
     
    {\displaystyle (x,y)=(\operatorname {cl} t,\operatorname {sl} t)} 
   
 quartic curve  
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        + 
        
          x 
          
            2 
           
         
        
          y 
          
            2 
           
         
        = 
        1. 
       
     
    {\displaystyle x^{2}+y^{2}+x^{2}y^{2}=1.} 
   
 
This identity can alternately be rewritten:[ 18] 
  
    
      
        
          
            ( 
           
         
        1 
        + 
        
          c 
          
            l 
            
              2 
             
           
         
         
        z 
        
          
            ) 
           
         
        
          
            ( 
           
         
        1 
        + 
        
          s 
          
            l 
            
              2 
             
           
         
         
        z 
        
          
            ) 
           
         
        = 
        2 
       
     
    {\displaystyle {\bigl (}1+\operatorname {cl^{2}} z{\bigr )}{\bigl (}1+\operatorname {sl^{2}} z{\bigr )}=2} 
   
 
  
    
      
        
          c 
          
            l 
            
              2 
             
           
         
         
        z 
        = 
        
          
            
              1 
              − 
              
                s 
                
                  l 
                  
                    2 
                   
                 
               
               
              z 
             
            
              1 
              + 
              
                s 
                
                  l 
                  
                    2 
                   
                 
               
               
              z 
             
           
         
        , 
        
          s 
          
            l 
            
              2 
             
           
         
         
        z 
        = 
        
          
            
              1 
              − 
              
                c 
                
                  l 
                  
                    2 
                   
                 
               
               
              z 
             
            
              1 
              + 
              
                c 
                
                  l 
                  
                    2 
                   
                 
               
               
              z 
             
           
         
       
     
    {\displaystyle \operatorname {cl^{2}} z={\frac {1-\operatorname {sl^{2}} z}{1+\operatorname {sl^{2}} z}},\quad \operatorname {sl^{2}} z={\frac {1-\operatorname {cl^{2}} z}{1+\operatorname {cl^{2}} z}}} 
   
 Defining a tangent-sum  operator as 
  
    
      
        a 
        ⊕ 
        b 
        
          := 
         
        tan 
         
        ( 
        arctan 
         
        a 
        + 
        arctan 
         
        b 
        ) 
        = 
        
          
            
              a 
              + 
              b 
             
            
              1 
              − 
              a 
              b 
             
           
         
        , 
       
     
    {\displaystyle a\oplus b\mathrel {:=} \tan(\arctan a+\arctan b)={\frac {a+b}{1-ab}},} 
   
 
  
    
      
        
          c 
          
            l 
            
              2 
             
           
         
         
        z 
        ⊕ 
        
          s 
          
            l 
            
              2 
             
           
         
         
        z 
        = 
        1. 
       
     
    {\displaystyle \operatorname {cl^{2}} z\oplus \operatorname {sl^{2}} z=1.} 
   
 The functions 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}} 
   
 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}} 
   
 
  
    
      
        
          
            ( 
            
              
                ∫ 
                
                  0 
                 
                
                  x 
                 
               
              
                
                  
                    cl 
                    ~ 
                   
                 
               
              t 
              
                d 
               
              t 
             
            ) 
           
          
            2 
           
         
        + 
        
          
            ( 
            
              1 
              − 
              
                ∫ 
                
                  0 
                 
                
                  x 
                 
               
              
                
                  
                    sl 
                    ~ 
                   
                 
               
              t 
              
                d 
               
              t 
             
            ) 
           
          
            2 
           
         
        = 
        1. 
       
     
    {\displaystyle \left(\int _{0}^{x}{\tilde {\operatorname {cl} }}\,t\,\mathrm {d} t\right)^{2}+\left(1-\int _{0}^{x}{\tilde {\operatorname {sl} }}\,t\,\mathrm {d} t\right)^{2}=1.} 
   
 
Derivatives and integrals 
The derivatives are as follows:
  
    
      
        
          
            
              
                
                  
                    
                      d 
                     
                    
                      
                        d 
                       
                      z 
                     
                   
                 
                cl 
                 
                z 
                = 
                
                  c 
                  
                    l 
                    ′ 
                   
                 
                 
                z 
               
              
                = 
                − 
                
                  
                    ( 
                   
                 
                1 
                + 
                
                  c 
                  
                    l 
                    
                      2 
                     
                   
                 
                 
                z 
                
                  
                    ) 
                   
                 
                sl 
                 
                z 
                = 
                − 
                
                  
                    
                      2 
                      sl 
                       
                      z 
                     
                    
                      
                        sl 
                        
                          2 
                         
                       
                       
                      z 
                      + 
                      1 
                     
                   
                 
               
             
            
              
                
                  c 
                  
                    l 
                    
                      ′ 
                      
                        2 
                       
                     
                   
                 
                 
                z 
               
              
                = 
                1 
                − 
                
                  c 
                  
                    l 
                    
                      4 
                     
                   
                 
                 
                z 
               
             
            
              
                
                  
                    
                      d 
                     
                    
                      
                        d 
                       
                      z 
                     
                   
                 
                sl 
                 
                z 
                = 
                
                  s 
                  
                    l 
                    ′ 
                   
                 
                 
                z 
               
              
                = 
                
                  
                    ( 
                   
                 
                1 
                + 
                
                  s 
                  
                    l 
                    
                      2 
                     
                   
                 
                 
                z 
                
                  
                    ) 
                   
                 
                cl 
                 
                z 
                = 
                
                  
                    
                      2 
                      cl 
                       
                      z 
                     
                    
                      
                        cl 
                        
                          2 
                         
                       
                       
                      z 
                      + 
                      1 
                     
                   
                 
               
             
            
              
                
                  s 
                  
                    l 
                    
                      ′ 
                      
                        2 
                       
                     
                   
                 
                 
                z 
               
              
                = 
                1 
                − 
                
                  s 
                  
                    l 
                    
                      4 
                     
                   
                 
                 
                z 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {cl} z=\operatorname {cl'} z&=-{\bigl (}1+\operatorname {cl^{2}} z{\bigr )}\operatorname {sl} z=-{\frac {2\operatorname {sl} z}{\operatorname {sl} ^{2}z+1}}\\\operatorname {cl'^{2}} z&=1-\operatorname {cl^{4}} z\\[5mu]{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {sl} z=\operatorname {sl'} z&={\bigl (}1+\operatorname {sl^{2}} z{\bigr )}\operatorname {cl} z={\frac {2\operatorname {cl} z}{\operatorname {cl} ^{2}z+1}}\\\operatorname {sl'^{2}} z&=1-\operatorname {sl^{4}} z\end{aligned}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      d 
                     
                    
                      
                        d 
                       
                      z 
                     
                   
                 
                
                  
                    
                      cl 
                      ~ 
                     
                   
                 
                z 
               
              
                = 
                − 
                2 
                
                  
                    
                      sl 
                      ~ 
                     
                   
                 
                z 
                cl 
                 
                z 
                − 
                
                  
                    
                      
                        
                          
                            sl 
                            ~ 
                           
                         
                       
                      z 
                     
                    
                      cl 
                       
                      z 
                     
                   
                 
               
             
            
              
                
                  
                    
                      d 
                     
                    
                      
                        d 
                       
                      z 
                     
                   
                 
                
                  
                    
                      sl 
                      ~ 
                     
                   
                 
                z 
               
              
                = 
                2 
                
                  
                    
                      cl 
                      ~ 
                     
                   
                 
                z 
                cl 
                 
                z 
                − 
                
                  
                    
                      
                        
                          
                            cl 
                            ~ 
                           
                         
                       
                      z 
                     
                    
                      cl 
                       
                      z 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} z}}\,{\tilde {\operatorname {cl} }}\,z&=-2\,{\tilde {\operatorname {sl} }}\,z\,\operatorname {cl} z-{\frac {{\tilde {\operatorname {sl} }}\,z}{\operatorname {cl} z}}\\{\frac {\mathrm {d} }{\mathrm {d} z}}\,{\tilde {\operatorname {sl} }}\,z&=2\,{\tilde {\operatorname {cl} }}\,z\,\operatorname {cl} z-{\frac {{\tilde {\operatorname {cl} }}\,z}{\operatorname {cl} z}}\end{aligned}}} 
   
 The second derivatives of lemniscate sine and lemniscate cosine are their negative duplicated cubes:
  
    
      
        
          
            
              
                d 
               
              
                2 
               
             
            
              
                d 
               
              
                z 
                
                  2 
                 
               
             
           
         
        cl 
         
        z 
        = 
        − 
        2 
        
          c 
          
            l 
            
              3 
             
           
         
         
        z 
       
     
    {\displaystyle {\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\operatorname {cl} z=-2\operatorname {cl^{3}} z} 
   
 
  
    
      
        
          
            
              
                d 
               
              
                2 
               
             
            
              
                d 
               
              
                z 
                
                  2 
                 
               
             
           
         
        sl 
         
        z 
        = 
        − 
        2 
        
          s 
          
            l 
            
              3 
             
           
         
         
        z 
       
     
    {\displaystyle {\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\operatorname {sl} z=-2\operatorname {sl^{3}} z} 
   
 The lemniscate functions can be integrated using the inverse tangent function:
  
    
      
        
          
            
              
                ∫ 
                cl 
                 
                z 
                
                  
                    d 
                   
                  z 
                 
               
              
                = 
                arctan 
                 
                sl 
                 
                z 
                + 
                C 
               
             
            
              
                ∫ 
                sl 
                 
                z 
                
                  
                    d 
                   
                  z 
                 
               
              
                = 
                − 
                arctan 
                 
                cl 
                 
                z 
                + 
                C 
               
             
            
              
                ∫ 
                
                  
                    
                      cl 
                      ~ 
                     
                   
                 
                z 
                
                  d 
                 
                z 
               
              
                = 
                
                  
                    
                      
                        
                          
                            sl 
                            ~ 
                           
                         
                       
                      z 
                     
                    
                      cl 
                       
                      z 
                     
                   
                 
                + 
                C 
               
             
            
              
                ∫ 
                
                  
                    
                      sl 
                      ~ 
                     
                   
                 
                z 
                
                  d 
                 
                z 
               
              
                = 
                − 
                
                  
                    
                      
                        
                          
                            cl 
                            ~ 
                           
                         
                       
                      z 
                     
                    
                      cl 
                       
                      z 
                     
                   
                 
                + 
                C 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\int \operatorname {cl} z\mathop {\mathrm {d} z} &=\arctan \operatorname {sl} z+C\\\int \operatorname {sl} z\mathop {\mathrm {d} z} &=-\arctan \operatorname {cl} z+C\\\int {\tilde {\operatorname {cl} }}\,z\,\mathrm {d} z&={\frac {{\tilde {\operatorname {sl} }}\,z}{\operatorname {cl} z}}+C\\\int {\tilde {\operatorname {sl} }}\,z\,\mathrm {d} z&=-{\frac {{\tilde {\operatorname {cl} }}\,z}{\operatorname {cl} z}}+C\end{aligned}}} 
   
 
Argument sum and multiple identities 
Like the trigonometric functions, the lemniscate functions satisfy argument sum and difference identities. The original identity used by Fagnano for bisection of the lemniscate was:[ 19] 
  
    
      
        sl 
         
        ( 
        u 
        + 
        v 
        ) 
        = 
        
          
            
              sl 
               
              u 
              
                s 
                
                  l 
                  ′ 
                 
               
               
              v 
              + 
              sl 
               
              v 
              
                s 
                
                  l 
                  ′ 
                 
               
               
              u 
             
            
              1 
              + 
              
                s 
                
                  l 
                  
                    2 
                   
                 
               
               
              u 
              
                s 
                
                  l 
                  
                    2 
                   
                 
               
               
              v 
             
           
         
       
     
    {\displaystyle \operatorname {sl} (u+v)={\frac {\operatorname {sl} u\,\operatorname {sl'} v+\operatorname {sl} v\,\operatorname {sl'} u}{1+\operatorname {sl^{2}} u\,\operatorname {sl^{2}} v}}} 
   
 The derivative and Pythagorean-like identities can be used to rework the identity used by Fagano in terms of sl  and cl . Defining a tangent-sum  operator 
  
    
      
        a 
        ⊕ 
        b 
        
          := 
         
        tan 
         
        ( 
        arctan 
         
        a 
        + 
        arctan 
         
        b 
        ) 
       
     
    {\displaystyle a\oplus b\mathrel {:=} \tan(\arctan a+\arctan b)} 
   
 
  
    
      
        a 
        ⊖ 
        b 
        
          := 
         
        a 
        ⊕ 
        ( 
        − 
        b 
        ) 
        , 
       
     
    {\displaystyle a\ominus b\mathrel {:=} a\oplus (-b),} 
   
 [ 20] 
  
    
      
        
          
            
              
                cl 
                 
                ( 
                u 
                + 
                v 
                ) 
               
              
                = 
                cl 
                 
                u 
                cl 
                 
                v 
                ⊖ 
                sl 
                 
                u 
                sl 
                 
                v 
                = 
                
                  
                    
                      cl 
                       
                      u 
                      cl 
                       
                      v 
                      − 
                      sl 
                       
                      u 
                      sl 
                       
                      v 
                     
                    
                      1 
                      + 
                      sl 
                       
                      u 
                      cl 
                       
                      u 
                      sl 
                       
                      v 
                      cl 
                       
                      v 
                     
                   
                 
               
             
            
              
                cl 
                 
                ( 
                u 
                − 
                v 
                ) 
               
              
                = 
                cl 
                 
                u 
                cl 
                 
                v 
                ⊕ 
                sl 
                 
                u 
                sl 
                 
                v 
               
             
            
              
                sl 
                 
                ( 
                u 
                + 
                v 
                ) 
               
              
                = 
                sl 
                 
                u 
                cl 
                 
                v 
                ⊕ 
                cl 
                 
                u 
                sl 
                 
                v 
                = 
                
                  
                    
                      sl 
                       
                      u 
                      cl 
                       
                      v 
                      + 
                      cl 
                       
                      u 
                      sl 
                       
                      v 
                     
                    
                      1 
                      − 
                      sl 
                       
                      u 
                      cl 
                       
                      u 
                      sl 
                       
                      v 
                      cl 
                       
                      v 
                     
                   
                 
               
             
            
              
                sl 
                 
                ( 
                u 
                − 
                v 
                ) 
               
              
                = 
                sl 
                 
                u 
                cl 
                 
                v 
                ⊖ 
                cl 
                 
                u 
                sl 
                 
                v 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {cl} (u+v)&=\operatorname {cl} u\,\operatorname {cl} v\ominus \operatorname {sl} u\,\operatorname {sl} v={\frac {\operatorname {cl} u\,\operatorname {cl} v-\operatorname {sl} u\,\operatorname {sl} v}{1+\operatorname {sl} u\,\operatorname {cl} u\,\operatorname {sl} v\,\operatorname {cl} v}}\\[2mu]\operatorname {cl} (u-v)&=\operatorname {cl} u\,\operatorname {cl} v\oplus \operatorname {sl} u\,\operatorname {sl} v\\[2mu]\operatorname {sl} (u+v)&=\operatorname {sl} u\,\operatorname {cl} v\oplus \operatorname {cl} u\,\operatorname {sl} v={\frac {\operatorname {sl} u\,\operatorname {cl} v+\operatorname {cl} u\,\operatorname {sl} v}{1-\operatorname {sl} u\,\operatorname {cl} u\,\operatorname {sl} v\,\operatorname {cl} v}}\\[2mu]\operatorname {sl} (u-v)&=\operatorname {sl} u\,\operatorname {cl} v\ominus \operatorname {cl} u\,\operatorname {sl} v\end{aligned}}} 
   
 These resemble their trigonometric analogs :
  
    
      
        
          
            
              
                cos 
                 
                ( 
                u 
                ± 
                v 
                ) 
               
              
                = 
                cos 
                 
                u 
                cos 
                 
                v 
                ∓ 
                sin 
                 
                u 
                sin 
                 
                v 
               
             
            
              
                sin 
                 
                ( 
                u 
                ± 
                v 
                ) 
               
              
                = 
                sin 
                 
                u 
                cos 
                 
                v 
                ± 
                cos 
                 
                u 
                sin 
                 
                v 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\cos(u\pm v)&=\cos u\,\cos v\mp \sin u\,\sin v\\[6mu]\sin(u\pm v)&=\sin u\,\cos v\pm \cos u\,\sin v\end{aligned}}} 
   
 In particular, to compute the complex-valued functions in real components,
  
    
      
        
          
            
              
                cl 
                 
                ( 
                x 
                + 
                i 
                y 
                ) 
               
              
                = 
                
                  
                    
                      cl 
                       
                      x 
                      − 
                      i 
                      sl 
                       
                      x 
                      sl 
                       
                      y 
                      cl 
                       
                      y 
                     
                    
                      cl 
                       
                      y 
                      + 
                      i 
                      sl 
                       
                      x 
                      cl 
                       
                      x 
                      sl 
                       
                      y 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      cl 
                       
                      x 
                      cl 
                       
                      y 
                      
                        ( 
                        
                          1 
                          − 
                          
                            sl 
                            
                              2 
                             
                           
                           
                          x 
                          
                            sl 
                            
                              2 
                             
                           
                           
                          y 
                         
                        ) 
                       
                     
                    
                      
                        cl 
                        
                          2 
                         
                       
                       
                      y 
                      + 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        cl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      y 
                     
                   
                 
                − 
                i 
                
                  
                    
                      sl 
                       
                      x 
                      sl 
                       
                      y 
                      
                        ( 
                        
                          
                            cl 
                            
                              2 
                             
                           
                           
                          x 
                          + 
                          
                            cl 
                            
                              2 
                             
                           
                           
                          y 
                         
                        ) 
                       
                     
                    
                      
                        cl 
                        
                          2 
                         
                       
                       
                      y 
                      + 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        cl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      y 
                     
                   
                 
               
             
            
              
                sl 
                 
                ( 
                x 
                + 
                i 
                y 
                ) 
               
              
                = 
                
                  
                    
                      sl 
                       
                      x 
                      + 
                      i 
                      cl 
                       
                      x 
                      sl 
                       
                      y 
                      cl 
                       
                      y 
                     
                    
                      cl 
                       
                      y 
                      − 
                      i 
                      sl 
                       
                      x 
                      cl 
                       
                      x 
                      sl 
                       
                      y 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      sl 
                       
                      x 
                      cl 
                       
                      y 
                      
                        ( 
                        
                          1 
                          − 
                          
                            cl 
                            
                              2 
                             
                           
                           
                          x 
                          
                            sl 
                            
                              2 
                             
                           
                           
                          y 
                         
                        ) 
                       
                     
                    
                      
                        cl 
                        
                          2 
                         
                       
                       
                      y 
                      + 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        cl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      y 
                     
                   
                 
                + 
                i 
                
                  
                    
                      cl 
                       
                      x 
                      sl 
                       
                      y 
                      
                        ( 
                        
                          
                            sl 
                            
                              2 
                             
                           
                           
                          x 
                          + 
                          
                            cl 
                            
                              2 
                             
                           
                           
                          y 
                         
                        ) 
                       
                     
                    
                      
                        cl 
                        
                          2 
                         
                       
                       
                      y 
                      + 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        cl 
                        
                          2 
                         
                       
                       
                      x 
                      
                        sl 
                        
                          2 
                         
                       
                       
                      y 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {cl} (x+iy)&={\frac {\operatorname {cl} x-i\operatorname {sl} x\,\operatorname {sl} y\,\operatorname {cl} y}{\operatorname {cl} y+i\operatorname {sl} x\,\operatorname {cl} x\,\operatorname {sl} y}}\\[4mu]&={\frac {\operatorname {cl} x\,\operatorname {cl} y\left(1-\operatorname {sl} ^{2}x\,\operatorname {sl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}-i{\frac {\operatorname {sl} x\,\operatorname {sl} y\left(\operatorname {cl} ^{2}x+\operatorname {cl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}\\[12mu]\operatorname {sl} (x+iy)&={\frac {\operatorname {sl} x+i\operatorname {cl} x\,\operatorname {sl} y\,\operatorname {cl} y}{\operatorname {cl} y-i\operatorname {sl} x\,\operatorname {cl} x\,\operatorname {sl} y}}\\[4mu]&={\frac {\operatorname {sl} x\,\operatorname {cl} y\left(1-\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}+i{\frac {\operatorname {cl} x\,\operatorname {sl} y\left(\operatorname {sl} ^{2}x+\operatorname {cl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}\end{aligned}}} 
   
 Gauss discovered that
  
    
      
        
          
            
              sl 
               
              ( 
              u 
              − 
              v 
              ) 
             
            
              sl 
               
              ( 
              u 
              + 
              v 
              ) 
             
           
         
        = 
        
          
            
              sl 
               
              ( 
              ( 
              1 
              + 
              i 
              ) 
              u 
              ) 
              − 
              sl 
               
              ( 
              ( 
              1 
              + 
              i 
              ) 
              v 
              ) 
             
            
              sl 
               
              ( 
              ( 
              1 
              + 
              i 
              ) 
              u 
              ) 
              + 
              sl 
               
              ( 
              ( 
              1 
              + 
              i 
              ) 
              v 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {\operatorname {sl} (u-v)}{\operatorname {sl} (u+v)}}={\frac {\operatorname {sl} ((1+i)u)-\operatorname {sl} ((1+i)v)}{\operatorname {sl} ((1+i)u)+\operatorname {sl} ((1+i)v)}}} 
   
 where 
  
    
      
        u 
        , 
        v 
        ∈ 
        
          C 
         
       
     
    {\displaystyle u,v\in \mathbb {C} } 
   
 
Also
  
    
      
        sl 
         
        ( 
        u 
        + 
        v 
        ) 
        sl 
         
        ( 
        u 
        − 
        v 
        ) 
        = 
        
          
            
              
                sl 
                
                  2 
                 
               
               
              u 
              − 
              
                sl 
                
                  2 
                 
               
               
              v 
             
            
              1 
              + 
              
                sl 
                
                  2 
                 
               
               
              u 
              
                sl 
                
                  2 
                 
               
               
              v 
             
           
         
       
     
    {\displaystyle \operatorname {sl} (u+v)\operatorname {sl} (u-v)={\frac {\operatorname {sl} ^{2}u-\operatorname {sl} ^{2}v}{1+\operatorname {sl} ^{2}u\operatorname {sl} ^{2}v}}} 
   
 where 
  
    
      
        u 
        , 
        v 
        ∈ 
        
          C 
         
       
     
    {\displaystyle u,v\in \mathbb {C} } 
   
 
  
    
      
        sin 
         
        ( 
        u 
        + 
        v 
        ) 
        sin 
         
        ( 
        u 
        − 
        v 
        ) 
        = 
        
          sin 
          
            2 
           
         
         
        u 
        − 
        
          sin 
          
            2 
           
         
         
        v 
        . 
       
     
    {\displaystyle \sin(u+v)\sin(u-v)=\sin ^{2}u-\sin ^{2}v.} 
   
 Bisection formulas:
  
    
      
        
          cl 
          
            2 
           
         
         
        
          
            
              1 
              2 
             
           
         
        x 
        = 
        
          
            
              1 
              + 
              cl 
               
              x 
              
                
                  1 
                  + 
                  
                    sl 
                    
                      2 
                     
                   
                   
                  x 
                 
               
             
            
              1 
              + 
              
                
                  1 
                  + 
                  
                    sl 
                    
                      2 
                     
                   
                   
                  x 
                 
               
             
           
         
       
     
    {\displaystyle \operatorname {cl} ^{2}{\tfrac {1}{2}}x={\frac {1+\operatorname {cl} x{\sqrt {1+\operatorname {sl} ^{2}x}}}{1+{\sqrt {1+\operatorname {sl} ^{2}x}}}}} 
   
 
  
    
      
        
          sl 
          
            2 
           
         
         
        
          
            
              1 
              2 
             
           
         
        x 
        = 
        
          
            
              1 
              − 
              cl 
               
              x 
              
                
                  1 
                  + 
                  
                    sl 
                    
                      2 
                     
                   
                   
                  x 
                 
               
             
            
              1 
              + 
              
                
                  1 
                  + 
                  
                    sl 
                    
                      2 
                     
                   
                   
                  x 
                 
               
             
           
         
       
     
    {\displaystyle \operatorname {sl} ^{2}{\tfrac {1}{2}}x={\frac {1-\operatorname {cl} x{\sqrt {1+\operatorname {sl} ^{2}x}}}{1+{\sqrt {1+\operatorname {sl} ^{2}x}}}}} 
   
 Duplication formulas:[ 21] 
  
    
      
        cl 
         
        2 
        x 
        = 
        
          
            
              − 
              1 
              + 
              2 
              
                cl 
                
                  2 
                 
               
               
              x 
              + 
              
                cl 
                
                  4 
                 
               
               
              x 
             
            
              1 
              + 
              2 
              
                cl 
                
                  2 
                 
               
               
              x 
              − 
              
                cl 
                
                  4 
                 
               
               
              x 
             
           
         
       
     
    {\displaystyle \operatorname {cl} 2x={\frac {-1+2\,\operatorname {cl} ^{2}x+\operatorname {cl} ^{4}x}{1+2\,\operatorname {cl} ^{2}x-\operatorname {cl} ^{4}x}}} 
   
 
  
    
      
        sl 
         
        2 
        x 
        = 
        2 
        sl 
         
        x 
        cl 
         
        x 
        
          
            
              1 
              + 
              
                sl 
                
                  2 
                 
               
               
              x 
             
            
              1 
              + 
              
                sl 
                
                  4 
                 
               
               
              x 
             
           
         
       
     
    {\displaystyle \operatorname {sl} 2x=2\,\operatorname {sl} x\,\operatorname {cl} x{\frac {1+\operatorname {sl} ^{2}x}{1+\operatorname {sl} ^{4}x}}} 
   
 Triplication formulas:[ 21] 
  
    
      
        cl 
         
        3 
        x 
        = 
        
          
            
              − 
              3 
              cl 
               
              x 
              + 
              6 
              
                cl 
                
                  5 
                 
               
               
              x 
              + 
              
                cl 
                
                  9 
                 
               
               
              x 
             
            
              1 
              + 
              6 
              
                cl 
                
                  4 
                 
               
               
              x 
              − 
              3 
              
                cl 
                
                  8 
                 
               
               
              x 
             
           
         
       
     
    {\displaystyle \operatorname {cl} 3x={\frac {-3\,\operatorname {cl} x+6\,\operatorname {cl} ^{5}x+\operatorname {cl} ^{9}x}{1+6\,\operatorname {cl} ^{4}x-3\,\operatorname {cl} ^{8}x}}} 
   
 
  
    
      
        sl 
         
        3 
        x 
        = 
        
          
            
              
                3 
               
              
                
                  sl 
                   
                  x 
                  − 
                   
                
                  
                    6 
                   
                  
                    
                      
                        sl 
                        
                          5 
                         
                       
                       
                      x 
                      − 
                       
                    
                      
                        1 
                       
                      
                        
                          
                            sl 
                            
                              9 
                             
                           
                           
                          x 
                         
                       
                     
                   
                 
               
             
            
              
                1 
               
              
                
                  + 
                   
                
                  
                    6 
                   
                  
                    
                      
                        sl 
                        
                          4 
                         
                       
                       
                      x 
                      − 
                       
                    
                      
                        3 
                       
                      
                        
                          
                            sl 
                            
                              8 
                             
                           
                           
                          x 
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \operatorname {sl} 3x={\frac {\color {red}{3}\,\color {black}{\operatorname {sl} x-\,}\color {green}{6}\,\color {black}{\operatorname {sl} ^{5}x-\,}\color {blue}{1}\,\color {black}{\operatorname {sl} ^{9}x}}{\color {blue}{1}\,\color {black}{+\,}\,\color {green}{6}\,\color {black}{\operatorname {sl} ^{4}x-\,}\color {red}{3}\,\color {black}{\operatorname {sl} ^{8}x}}}} 
   
 Note the "reverse symmetry" of the coefficients of numerator and denominator of 
  
    
      
        sl 
         
        3 
        x 
       
     
    {\displaystyle \operatorname {sl} 3x} 
   
 
  
    
      
        sl 
         
        β 
        x 
       
     
    {\displaystyle \operatorname {sl} \beta x} 
   
 
  
    
      
        β 
        = 
        m 
        + 
        n 
        i 
       
     
    {\displaystyle \beta =m+ni} 
   
 
  
    
      
        m 
        , 
        n 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle m,n\in \mathbb {Z} } 
   
 
  
    
      
        m 
        + 
        n 
       
     
    {\displaystyle m+n} 
   
 [ 15] 
Lemnatomic polynomials 
Let 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
 lattice 
  
    
      
        L 
        = 
        
          Z 
         
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
        + 
        
          Z 
         
        ( 
        1 
        − 
        i 
        ) 
        ϖ 
        . 
       
     
    {\displaystyle L=\mathbb {Z} (1+i)\varpi +\mathbb {Z} (1-i)\varpi .} 
   
 Furthermore, let 
  
    
      
        K 
        = 
        
          Q 
         
        ( 
        i 
        ) 
       
     
    {\displaystyle K=\mathbb {Q} (i)} 
   
 
  
    
      
        
          
            O 
           
         
        = 
        
          Z 
         
        [ 
        i 
        ] 
       
     
    {\displaystyle {\mathcal {O}}=\mathbb {Z} [i]} 
   
 
  
    
      
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle z\in \mathbb {C} } 
   
 
  
    
      
        β 
        = 
        m 
        + 
        i 
        n 
       
     
    {\displaystyle \beta =m+in} 
   
 
  
    
      
        γ 
        = 
        
          m 
          ′ 
         
        + 
        i 
        
          n 
          ′ 
         
       
     
    {\displaystyle \gamma =m'+in'} 
   
 
  
    
      
        m 
        , 
        n 
        , 
        
          m 
          ′ 
         
        , 
        
          n 
          ′ 
         
        ∈ 
        
          Z 
         
       
     
    {\displaystyle m,n,m',n'\in \mathbb {Z} } 
   
 
  
    
      
        m 
        + 
        n 
       
     
    {\displaystyle m+n} 
   
 
  
    
      
        
          m 
          ′ 
         
        + 
        
          n 
          ′ 
         
       
     
    {\displaystyle m'+n'} 
   
 
  
    
      
        γ 
        ≡ 
        1 
        mod 
        2 
        ( 
        1 
        + 
        i 
        ) 
       
     
    {\displaystyle \gamma \equiv 1\,\operatorname {mod} \,2(1+i)} 
   
 
  
    
      
        sl 
         
        β 
        z 
        = 
        
          M 
          
            β 
           
         
        ( 
        sl 
         
        z 
        ) 
       
     
    {\displaystyle \operatorname {sl} \beta z=M_{\beta }(\operatorname {sl} z)} 
   
 
  
    
      
        
          M 
          
            β 
           
         
        ( 
        x 
        ) 
        = 
        
          i 
          
            ε 
           
         
        x 
        
          
            
              
                P 
                
                  β 
                 
               
              ( 
              
                x 
                
                  4 
                 
               
              ) 
             
            
              
                Q 
                
                  β 
                 
               
              ( 
              
                x 
                
                  4 
                 
               
              ) 
             
           
         
       
     
    {\displaystyle M_{\beta }(x)=i^{\varepsilon }x{\frac {P_{\beta }(x^{4})}{Q_{\beta }(x^{4})}}} 
   
 for some coprime polynomials 
  
    
      
        
          P 
          
            β 
           
         
        ( 
        x 
        ) 
        , 
        
          Q 
          
            β 
           
         
        ( 
        x 
        ) 
        ∈ 
        
          
            O 
           
         
        [ 
        x 
        ] 
       
     
    {\displaystyle P_{\beta }(x),Q_{\beta }(x)\in {\mathcal {O}}[x]} 
   
 
  
    
      
        ε 
        ∈ 
        { 
        0 
        , 
        1 
        , 
        2 
        , 
        3 
        } 
       
     
    {\displaystyle \varepsilon \in \{0,1,2,3\}} 
   
 [ 22] 
  
    
      
        x 
        
          P 
          
            β 
           
         
        ( 
        
          x 
          
            4 
           
         
        ) 
        = 
        
          ∏ 
          
            γ 
            
              | 
             
            β 
           
         
        
          Λ 
          
            γ 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle xP_{\beta }(x^{4})=\prod _{\gamma |\beta }\Lambda _{\gamma }(x)} 
   
 and
  
    
      
        
          Λ 
          
            β 
           
         
        ( 
        x 
        ) 
        = 
        
          ∏ 
          
            [ 
            α 
            ] 
            ∈ 
            ( 
            
              
                O 
               
             
            
              / 
             
            β 
            
              
                O 
               
             
            
              ) 
              
                × 
               
             
           
         
        ( 
        x 
        − 
        sl 
         
        α 
        
          δ 
          
            β 
           
         
        ) 
       
     
    {\displaystyle \Lambda _{\beta }(x)=\prod _{[\alpha ]\in ({\mathcal {O}}/\beta {\mathcal {O}})^{\times }}(x-\operatorname {sl} \alpha \delta _{\beta })} 
   
 where 
  
    
      
        
          δ 
          
            β 
           
         
       
     
    {\displaystyle \delta _{\beta }} 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 torsion  generator (i.e. 
  
    
      
        
          δ 
          
            β 
           
         
        ∈ 
        ( 
        1 
        
          / 
         
        β 
        ) 
        L 
       
     
    {\displaystyle \delta _{\beta }\in (1/\beta )L} 
   
 
  
    
      
        [ 
        
          δ 
          
            β 
           
         
        ] 
        ∈ 
        ( 
        1 
        
          / 
         
        β 
        ) 
        L 
        
          / 
         
        L 
       
     
    {\displaystyle [\delta _{\beta }]\in (1/\beta )L/L} 
   
 
  
    
      
        ( 
        1 
        
          / 
         
        β 
        ) 
        L 
        
          / 
         
        L 
       
     
    {\displaystyle (1/\beta )L/L} 
   
 
  
    
      
        
          
            O 
           
         
       
     
    {\displaystyle {\mathcal {O}}} 
   
 module ). Examples of 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        2 
        ϖ 
        
          / 
         
        β 
       
     
    {\displaystyle 2\varpi /\beta } 
   
 
  
    
      
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
        
          / 
         
        β 
       
     
    {\displaystyle (1+i)\varpi /\beta } 
   
 
  
    
      
        
          Λ 
          
            β 
           
         
        ( 
        x 
        ) 
        ∈ 
        
          
            O 
           
         
        [ 
        x 
        ] 
       
     
    {\displaystyle \Lambda _{\beta }(x)\in {\mathcal {O}}[x]} 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 lemnatomic polynomial . It is monic and is irreducible over 
  
    
      
        K 
       
     
    {\displaystyle K} 
   
 cyclotomic polynomials ,[ 23] 
  
    
      
        
          Φ 
          
            k 
           
         
        ( 
        x 
        ) 
        = 
        
          ∏ 
          
            [ 
            a 
            ] 
            ∈ 
            ( 
            
              Z 
             
            
              / 
             
            k 
            
              Z 
             
            
              ) 
              
                × 
               
             
           
         
        ( 
        x 
        − 
        
          ζ 
          
            k 
           
          
            a 
           
         
        ) 
        . 
       
     
    {\displaystyle \Phi _{k}(x)=\prod _{[a]\in (\mathbb {Z} /k\mathbb {Z} )^{\times }}(x-\zeta _{k}^{a}).} 
   
 The 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        
          Λ 
          
            β 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle \Lambda _{\beta }(x)} 
   
 minimal polynomial  of 
  
    
      
        sl 
         
        
          δ 
          
            β 
           
         
       
     
    {\displaystyle \operatorname {sl} \delta _{\beta }} 
   
 
  
    
      
        K 
        [ 
        x 
        ] 
       
     
    {\displaystyle K[x]} 
   
 
  
    
      
        
          ω 
          
            β 
           
         
        = 
        sl 
         
        ( 
        2 
        ϖ 
        
          / 
         
        β 
        ) 
       
     
    {\displaystyle \omega _{\beta }=\operatorname {sl} (2\varpi /\beta )} 
   
 
  
    
      
        
          
            
              
                ω 
                ~ 
               
             
           
          
            β 
           
         
        = 
        sl 
         
        ( 
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
        
          / 
         
        β 
        ) 
       
     
    {\displaystyle {\tilde {\omega }}_{\beta }=\operatorname {sl} ((1+i)\varpi /\beta )} 
   
 
  
    
      
        
          ω 
          
            5 
           
         
       
     
    {\displaystyle \omega _{5}} 
   
 
  
    
      
        
          
            
              
                ω 
                ~ 
               
             
           
          
            5 
           
         
       
     
    {\displaystyle {\tilde {\omega }}_{5}} 
   
 
  
    
      
        K 
        [ 
        x 
        ] 
       
     
    {\displaystyle K[x]} 
   
 
  
    
      
        
          Λ 
          
            5 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            16 
           
         
        + 
        52 
        
          x 
          
            12 
           
         
        − 
        26 
        
          x 
          
            8 
           
         
        − 
        12 
        
          x 
          
            4 
           
         
        + 
        1 
        , 
       
     
    {\displaystyle \Lambda _{5}(x)=x^{16}+52x^{12}-26x^{8}-12x^{4}+1,} 
   
 and[ 24] 
  
    
      
        
          ω 
          
            5 
           
         
        = 
        
          
            
              − 
              13 
              + 
              6 
              
                
                  5 
                 
               
              + 
              2 
              
                
                  85 
                  − 
                  38 
                  
                    
                      5 
                     
                   
                 
               
             
            
              4 
             
           
         
       
     
    {\displaystyle \omega _{5}={\sqrt[{4}]{-13+6{\sqrt {5}}+2{\sqrt {85-38{\sqrt {5}}}}}}} 
   
 
  
    
      
        
          
            
              
                ω 
                ~ 
               
             
           
          
            5 
           
         
        = 
        
          
            
              − 
              13 
              − 
              6 
              
                
                  5 
                 
               
              + 
              2 
              
                
                  85 
                  + 
                  38 
                  
                    
                      5 
                     
                   
                 
               
             
            
              4 
             
           
         
       
     
    {\displaystyle {\tilde {\omega }}_{5}={\sqrt[{4}]{-13-6{\sqrt {5}}+2{\sqrt {85+38{\sqrt {5}}}}}}} 
   
 [ 25] (an equivalent expression is given in the table below). Another example is[ 23] 
  
    
      
        
          Λ 
          
            − 
            1 
            + 
            2 
            i 
           
         
        ( 
        x 
        ) 
        = 
        
          x 
          
            4 
           
         
        − 
        1 
        + 
        2 
        i 
       
     
    {\displaystyle \Lambda _{-1+2i}(x)=x^{4}-1+2i} 
   
 which is the minimal polynomial of 
  
    
      
        
          ω 
          
            − 
            1 
            + 
            2 
            i 
           
         
       
     
    {\displaystyle \omega _{-1+2i}} 
   
 
  
    
      
        
          
            
              
                ω 
                ~ 
               
             
           
          
            − 
            1 
            + 
            2 
            i 
           
         
       
     
    {\displaystyle {\tilde {\omega }}_{-1+2i}} 
   
 
  
    
      
        K 
        [ 
        x 
        ] 
        . 
       
     
    {\displaystyle K[x].} 
   
 
If 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 [ 26] [ 27] 
  
    
      
        deg 
         
        
          Λ 
          
            β 
           
         
        = 
        
          β 
          
            2 
           
         
        
          ∏ 
          
            p 
            
              | 
             
            β 
           
         
        
          ( 
          
            1 
            − 
            
              
                1 
                p 
               
             
           
          ) 
         
        
          ( 
          
            1 
            − 
            
              
                
                  ( 
                  − 
                  1 
                  
                    ) 
                    
                      ( 
                      p 
                      − 
                      1 
                      ) 
                      
                        / 
                       
                      2 
                     
                   
                 
                p 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {deg} \Lambda _{\beta }=\beta ^{2}\prod _{p|\beta }\left(1-{\frac {1}{p}}\right)\left(1-{\frac {(-1)^{(p-1)/2}}{p}}\right)} 
   
 which can be compared to the cyclotomic analog
  
    
      
        deg 
         
        
          Φ 
          
            k 
           
         
        = 
        k 
        
          ∏ 
          
            p 
            
              | 
             
            k 
           
         
        
          ( 
          
            1 
            − 
            
              
                1 
                p 
               
             
           
          ) 
         
        . 
       
     
    {\displaystyle \operatorname {deg} \Phi _{k}=k\prod _{p|k}\left(1-{\frac {1}{p}}\right).} 
   
 
Specific values 
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   parts of equal length, using only basic arithmetic and square roots, if and only if 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   is of the form 
  
    
      
        n 
        = 
        
          2 
          
            k 
           
         
        
          p 
          
            1 
           
         
        
          p 
          
            2 
           
         
        ⋯ 
        
          p 
          
            m 
           
         
       
     
    {\displaystyle n=2^{k}p_{1}p_{2}\cdots p_{m}} 
   
 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
   is a non-negative integer  and each 
  
    
      
        
          p 
          
            i 
           
         
       
     
    {\displaystyle p_{i}} 
   
   (if any) is a distinct Fermat prime .[ 28] 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        cl 
         
        n 
        ϖ 
       
     
    {\displaystyle \operatorname {cl} n\varpi } 
   
 
  
    
      
        sl 
         
        n 
        ϖ 
       
     
    {\displaystyle \operatorname {sl} n\varpi } 
   
  
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        − 
        1 
       
     
    {\displaystyle -1} 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
  
  
    
      
        
          
            
              5 
              6 
             
           
         
       
     
    {\displaystyle {\tfrac {5}{6}}} 
   
 
  
    
      
        − 
        
          
            
              2 
              
                
                  3 
                 
               
              − 
              3 
             
            
              4 
             
           
         
       
     
    {\displaystyle -{\sqrt[{4}]{2{\sqrt {3}}-3}}} 
   
 
  
    
      
        
          
            
              1 
              2 
             
           
         
        
          
            ( 
           
         
        
          
            3 
           
         
        + 
        1 
        − 
        
          
            12 
            
              4 
             
           
         
        
          
            ) 
           
         
       
     
    {\displaystyle {\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}} 
   
  
  
    
      
        
          
            
              3 
              4 
             
           
         
       
     
    {\displaystyle {\tfrac {3}{4}}} 
   
 
  
    
      
        − 
        
          
            
              
                2 
               
             
            − 
            1 
           
         
       
     
    {\displaystyle -{\sqrt {{\sqrt {2}}-1}}} 
   
 
  
    
      
        
          
            
              
                2 
               
             
            − 
            1 
           
         
       
     
    {\displaystyle {\sqrt {{\sqrt {2}}-1}}} 
   
  
  
    
      
        
          
            
              2 
              3 
             
           
         
       
     
    {\displaystyle {\tfrac {2}{3}}} 
   
 
  
    
      
        − 
        
          
            
              1 
              2 
             
           
         
        
          
            ( 
           
         
        
          
            3 
           
         
        + 
        1 
        − 
        
          
            12 
            
              4 
             
           
         
        
          
            ) 
           
         
       
     
    {\displaystyle -{\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}} 
   
 
  
    
      
        
          
            
              2 
              
                
                  3 
                 
               
              − 
              3 
             
            
              4 
             
           
         
       
     
    {\displaystyle {\sqrt[{4}]{2{\sqrt {3}}-3}}} 
   
  
  
    
      
        
          
            
              1 
              2 
             
           
         
       
     
    {\displaystyle {\tfrac {1}{2}}} 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
  
  
    
      
        
          
            
              1 
              3 
             
           
         
       
     
    {\displaystyle {\tfrac {1}{3}}} 
   
 
  
    
      
        
          
            
              1 
              2 
             
           
         
        
          
            ( 
           
         
        
          
            3 
           
         
        + 
        1 
        − 
        
          
            12 
            
              4 
             
           
         
        
          
            ) 
           
         
       
     
    {\displaystyle {\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}} 
   
 
  
    
      
        
          
            
              2 
              
                
                  3 
                 
               
              − 
              3 
             
            
              4 
             
           
         
       
     
    {\displaystyle {\sqrt[{4}]{2{\sqrt {3}}-3}}} 
   
  
  
    
      
        
          
            
              1 
              4 
             
           
         
       
     
    {\displaystyle {\tfrac {1}{4}}} 
   
 
  
    
      
        
          
            
              
                2 
               
             
            − 
            1 
           
         
       
     
    {\displaystyle {\sqrt {{\sqrt {2}}-1}}} 
   
 
  
    
      
        
          
            
              
                2 
               
             
            − 
            1 
           
         
       
     
    {\displaystyle {\sqrt {{\sqrt {2}}-1}}} 
   
  
  
    
      
        
          
            
              1 
              6 
             
           
         
       
     
    {\displaystyle {\tfrac {1}{6}}} 
   
 
  
    
      
        
          
            
              2 
              
                
                  3 
                 
               
              − 
              3 
             
            
              4 
             
           
         
       
     
    {\displaystyle {\sqrt[{4}]{2{\sqrt {3}}-3}}} 
   
 
  
    
      
        
          
            
              1 
              2 
             
           
         
        
          
            ( 
           
         
        
          
            3 
           
         
        + 
        1 
        − 
        
          
            12 
            
              4 
             
           
         
        
          
            ) 
           
         
       
     
    {\displaystyle {\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}} 
   
  
Relation to geometric shapes 
The lemniscate sine and cosine relate the arc length of an arc of the lemniscate to the distance of one endpoint from the origin. The trigonometric sine and cosine analogously relate the arc length of an arc of a unit-diameter circle to the distance of one endpoint from the origin. 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 lemniscate of Bernoulli  with unit distance from its center to its furthest point (i.e. with unit "half-width"), is essential in the theory of the lemniscate elliptic functions. It can be characterized  in at least three ways:
Angular characterization:  Given two points 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
 
  
    
      
        B 
       
     
    {\displaystyle B} 
   
 
  
    
      
        
          B 
          ′ 
         
       
     
    {\displaystyle B'} 
   
 reflection  of 
  
    
      
        B 
       
     
    {\displaystyle B} 
   
 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 closure  of the locus of the points 
  
    
      
        P 
       
     
    {\displaystyle P} 
   
 
  
    
      
        
          | 
         
        A 
        P 
        B 
        − 
        A 
        P 
        
          B 
          ′ 
         
        
          | 
         
       
     
    {\displaystyle |APB-APB'|} 
   
 right angle .[ 29] 
Focal characterization:  
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 
  
    
      
        
          F 
          
            1 
           
         
        = 
        
          
            ( 
           
         
        
          − 
          
            
              
                1 
                
                  2 
                 
               
             
           
         
        , 
        0 
        
          
            ) 
           
         
       
     
    {\displaystyle F_{1}={\bigl (}{-{\tfrac {1}{\sqrt {2}}}},0{\bigr )}} 
   
 
  
    
      
        
          F 
          
            2 
           
         
        = 
        
          
            ( 
           
         
        
          
            
              1 
              
                2 
               
             
           
         
        , 
        0 
        
          
            ) 
           
         
       
     
    {\displaystyle F_{2}={\bigl (}{\tfrac {1}{\sqrt {2}}},0{\bigr )}} 
   
 
  
    
      
        
          
            
              1 
              2 
             
           
         
       
     
    {\displaystyle {\tfrac {1}{2}}} 
   
 
Explicit coordinate characterization:  
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 quartic curve  satisfying the polar  equation 
  
    
      
        
          r 
          
            2 
           
         
        = 
        cos 
         
        2 
        θ 
       
     
    {\displaystyle r^{2}=\cos 2\theta } 
   
 Cartesian  equation 
  
    
      
        
          
            ( 
           
         
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        
          
            ) 
           
         
        
          
           
          
            2 
           
         
        = 
        
          x 
          
            2 
           
         
        − 
        
          y 
          
            2 
           
         
        . 
       
     
    {\displaystyle {\bigl (}x^{2}+y^{2}{\bigr )}{}^{2}=x^{2}-y^{2}.} 
   
 
The perimeter  of 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 
  
    
      
        2 
        ϖ 
       
     
    {\displaystyle 2\varpi } 
   
 [ 30] 
The points on 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 
  
    
      
        r 
       
     
    {\displaystyle r} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        
          r 
          
            2 
           
         
       
     
    {\displaystyle x^{2}+y^{2}=r^{2}} 
   
 hyperbola  
  
    
      
        
          x 
          
            2 
           
         
        − 
        
          y 
          
            2 
           
         
        = 
        
          r 
          
            4 
           
         
       
     
    {\displaystyle x^{2}-y^{2}=r^{4}} 
   
 
  
    
      
        
          
            ( 
           
         
        x 
        ( 
        r 
        ) 
        , 
        y 
        ( 
        r 
        ) 
        
          
            ) 
           
         
        = 
        
          
            ( 
           
         
        
          
            
              
                
                  1 
                  2 
                 
               
             
            
              r 
              
                2 
               
             
            
              
                ( 
               
             
            1 
            + 
            
              r 
              
                2 
               
             
            
              
                ) 
               
             
           
         
        , 
        
          
            
              
                
                  1 
                  2 
                 
               
             
            
              r 
              
                2 
               
             
            
              
                ( 
               
             
            1 
            − 
            
              r 
              
                2 
               
             
            
              
                ) 
               
             
           
         
        
          
            ) 
           
         
        . 
       
     
    {\displaystyle {\big (}x(r),y(r){\big )}={\biggl (}\!{\sqrt {{\tfrac {1}{2}}r^{2}{\bigl (}1+r^{2}{\bigr )}}},\,{\sqrt {{\tfrac {1}{2}}r^{2}{\bigl (}1-r^{2}{\bigr )}}}\,{\biggr )}.} 
   
 Using this parametrization  with 
  
    
      
        r 
        ∈ 
        [ 
        0 
        , 
        1 
        ] 
       
     
    {\displaystyle r\in [0,1]} 
   
 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 arc length  from the origin to a point 
  
    
      
        
          
            ( 
           
         
        x 
        ( 
        r 
        ) 
        , 
        y 
        ( 
        r 
        ) 
        
          
            ) 
           
         
       
     
    {\displaystyle {\big (}x(r),y(r){\big )}} 
   
 [ 31] 
  
    
      
        
          
            
              
                
                  ∫ 
                  
                    0 
                   
                  
                    r 
                   
                 
                
                  
                    
                      x 
                      ′ 
                     
                    ( 
                    t 
                    
                      ) 
                      
                        2 
                       
                     
                    + 
                    
                      y 
                      ′ 
                     
                    ( 
                    t 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                
                  
                    d 
                   
                  t 
                 
               
             
            
              
                
                 
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    r 
                   
                 
                
                  
                    
                      
                        
                          ( 
                          1 
                          + 
                          2 
                          
                            t 
                            
                              2 
                             
                           
                          
                            ) 
                            
                              2 
                             
                           
                         
                        
                          2 
                          ( 
                          1 
                          + 
                          
                            t 
                            
                              2 
                             
                           
                          ) 
                         
                       
                     
                    + 
                    
                      
                        
                          ( 
                          1 
                          − 
                          2 
                          
                            t 
                            
                              2 
                             
                           
                          
                            ) 
                            
                              2 
                             
                           
                         
                        
                          2 
                          ( 
                          1 
                          − 
                          
                            t 
                            
                              2 
                             
                           
                          ) 
                         
                       
                     
                   
                 
                
                  
                    d 
                   
                  t 
                 
               
             
            
              
                
                 
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    r 
                   
                 
                
                  
                    
                      
                        d 
                       
                      t 
                     
                    
                      1 
                      − 
                      
                        t 
                        
                          4 
                         
                       
                     
                   
                 
               
             
            
              
                
                 
                = 
                arcsl 
                 
                r 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\int _{0}^{r}{\sqrt {x'(t)^{2}+y'(t)^{2}}}\mathop {\mathrm {d} t} \\&\quad {}=\int _{0}^{r}{\sqrt {{\frac {(1+2t^{2})^{2}}{2(1+t^{2})}}+{\frac {(1-2t^{2})^{2}}{2(1-t^{2})}}}}\mathop {\mathrm {d} t} \\[6mu]&\quad {}=\int _{0}^{r}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}\\[6mu]&\quad {}=\operatorname {arcsl} r.\end{aligned}}} 
   
 Likewise, the arc length from 
  
    
      
        ( 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle (1,0)} 
   
 
  
    
      
        
          
            ( 
           
         
        x 
        ( 
        r 
        ) 
        , 
        y 
        ( 
        r 
        ) 
        
          
            ) 
           
         
       
     
    {\displaystyle {\big (}x(r),y(r){\big )}} 
   
 
  
    
      
        
          
            
              
                
                  ∫ 
                  
                    r 
                   
                  
                    1 
                   
                 
                
                  
                    
                      x 
                      ′ 
                     
                    ( 
                    t 
                    
                      ) 
                      
                        2 
                       
                     
                    + 
                    
                      y 
                      ′ 
                     
                    ( 
                    t 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                
                  
                    d 
                   
                  t 
                 
               
             
            
              
                
                 
                = 
                
                  ∫ 
                  
                    r 
                   
                  
                    1 
                   
                 
                
                  
                    
                      
                        d 
                       
                      t 
                     
                    
                      1 
                      − 
                      
                        t 
                        
                          4 
                         
                       
                     
                   
                 
               
             
            
              
                
                 
                = 
                arccl 
                 
                r 
                = 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                ϖ 
                − 
                arcsl 
                 
                r 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&\int _{r}^{1}{\sqrt {x'(t)^{2}+y'(t)^{2}}}\mathop {\mathrm {d} t} \\&\quad {}=\int _{r}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}\\[6mu]&\quad {}=\operatorname {arccl} r={\tfrac {1}{2}}\varpi -\operatorname {arcsl} r.\end{aligned}}} 
   
 Or in the inverse direction, the lemniscate sine and cosine functions give the distance from the origin as functions of arc length from the origin and the point 
  
    
      
        ( 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle (1,0)} 
   
 
Analogously, the circular sine and cosine functions relate the chord length to the arc length for the unit diameter circle with polar equation 
  
    
      
        r 
        = 
        cos 
         
        θ 
       
     
    {\displaystyle r=\cos \theta } 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        x 
        , 
       
     
    {\displaystyle x^{2}+y^{2}=x,} 
   
 
  
    
      
        
          
            ( 
           
         
        x 
        ( 
        r 
        ) 
        , 
        y 
        ( 
        r 
        ) 
        
          
            ) 
           
         
        = 
        
          
            ( 
           
         
        
          r 
          
            2 
           
         
        , 
        
          
            
              r 
              
                2 
               
             
            
              
                ( 
               
             
            1 
            − 
            
              r 
              
                2 
               
             
            
              
                ) 
               
             
           
         
        
          
            ) 
           
         
        . 
       
     
    {\displaystyle {\big (}x(r),y(r){\big )}={\biggl (}r^{2},\,{\sqrt {r^{2}{\bigl (}1-r^{2}{\bigr )}}}\,{\biggr )}.} 
   
 Alternatively, just as the unit circle  
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 
  
    
      
        s 
       
     
    {\displaystyle s} 
   
 
  
    
      
        ( 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle (1,0)} 
   
 
  
    
      
        ( 
        x 
        ( 
        s 
        ) 
        , 
        y 
        ( 
        s 
        ) 
        ) 
        = 
        ( 
        cos 
         
        s 
        , 
        sin 
         
        s 
        ) 
        , 
       
     
    {\displaystyle (x(s),y(s))=(\cos s,\sin s),} 
   
 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 
  
    
      
        s 
       
     
    {\displaystyle s} 
   
 
  
    
      
        ( 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle (1,0)} 
   
 [ 32] 
  
    
      
        ( 
        x 
        ( 
        s 
        ) 
        , 
        y 
        ( 
        s 
        ) 
        ) 
        = 
        
          ( 
          
            
              
                
                  cl 
                   
                  s 
                 
                
                  1 
                  + 
                  
                    sl 
                    
                      2 
                     
                   
                   
                  s 
                 
               
             
            , 
            
              
                
                  sl 
                   
                  s 
                  cl 
                   
                  s 
                 
                
                  1 
                  + 
                  
                    sl 
                    
                      2 
                     
                   
                   
                  s 
                 
               
             
           
          ) 
         
        = 
        
          ( 
          
            
              
                
                  cl 
                  ~ 
                 
               
             
            s 
            , 
            
              
                
                  sl 
                  ~ 
                 
               
             
            s 
           
          ) 
         
        . 
       
     
    {\displaystyle (x(s),y(s))=\left({\frac {\operatorname {cl} s}{\sqrt {1+\operatorname {sl} ^{2}s}}},{\frac {\operatorname {sl} s\operatorname {cl} s}{\sqrt {1+\operatorname {sl} ^{2}s}}}\right)=\left({\tilde {\operatorname {cl} }}\,s,{\tilde {\operatorname {sl} }}\,s\right).} 
   
 The notation 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
        , 
        
          
            
              sl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }},\,{\tilde {\operatorname {sl} }}} 
   
 
The lemniscate integral and lemniscate functions satisfy an argument duplication identity discovered by Fagnano in 1718:[ 33] 
  
    
      
        
          ∫ 
          
            0 
           
          
            z 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        = 
        2 
        
          ∫ 
          
            0 
           
          
            u 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        , 
        
          if  
         
        z 
        = 
        
          
            
              2 
              u 
              
                
                  1 
                  − 
                  
                    u 
                    
                      4 
                     
                   
                 
               
             
            
              1 
              + 
              
                u 
                
                  4 
                 
               
             
           
         
        
           and  
         
        0 
        ≤ 
        u 
        ≤ 
        
          
            
              
                2 
               
             
            − 
            1 
           
         
        . 
       
     
    {\displaystyle \int _{0}^{z}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=2\int _{0}^{u}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}},\quad {\text{if }}z={\frac {2u{\sqrt {1-u^{4}}}}{1+u^{4}}}{\text{ and }}0\leq u\leq {\sqrt {{\sqrt {2}}-1}}.} 
   
 A lemniscate divided into 15 sections of equal arclength (red curves). Because the prime factors of 15 (3 and 5) are both Fermat primes, this polygon (in black) is constructible using a straightedge and compass. Later mathematicians generalized this result. Analogously to the constructible polygons  in the circle, the lemniscate can be divided into 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   sections of equal arc length using only straightedge and compass  if and only if 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   is of the form 
  
    
      
        n 
        = 
        
          2 
          
            k 
           
         
        
          p 
          
            1 
           
         
        
          p 
          
            2 
           
         
        ⋯ 
        
          p 
          
            m 
           
         
       
     
    {\displaystyle n=2^{k}p_{1}p_{2}\cdots p_{m}} 
   
 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
   is a non-negative integer  and each 
  
    
      
        
          p 
          
            i 
           
         
       
     
    {\displaystyle p_{i}} 
   
   (if any) is a distinct Fermat prime .[ 34] Niels Abel  in 1827–1828, and the "only if" part was proved by Michael Rosen  in 1981.[ 35] 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   sections of equal arc length using only straightedge and compass if and only if 
  
    
      
        φ 
        ( 
        n 
        ) 
       
     
    {\displaystyle \varphi (n)} 
   
 power of two  (where 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 Euler's totient function ). The lemniscate is not  assumed to be already drawn, as that would go against the rules of straightedge and compass constructions; instead, it is assumed that we are given only two points by which the lemniscate is defined, such as its center and radial point (one of the two points on the lemniscate such that their distance from the center is maximal) or its two foci.
Let 
  
    
      
        
          r 
          
            j 
           
         
        = 
        sl 
         
        
          
            
              
                2 
                j 
                ϖ 
               
              n 
             
           
         
       
     
    {\displaystyle r_{j}=\operatorname {sl} {\dfrac {2j\varpi }{n}}} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
  -division points for 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 
  
    
      
        
          ( 
          
            
              r 
              
                j 
               
             
            
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    ( 
                   
                 
                1 
                + 
                
                  r 
                  
                    j 
                   
                  
                    2 
                   
                 
                
                  
                    ) 
                   
                 
               
             
            , 
              
            ( 
            − 
            1 
            
              ) 
              
                
                  ⌊ 
                  
                    4 
                    j 
                    
                      / 
                     
                    n 
                   
                  ⌋ 
                 
               
             
            
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  r 
                  
                    j 
                   
                  
                    2 
                   
                 
                
                  
                    ( 
                   
                 
                1 
                − 
                
                  r 
                  
                    j 
                   
                  
                    2 
                   
                 
                
                  
                    ) 
                   
                 
               
             
           
          ) 
         
        , 
        j 
        ∈ 
        { 
        1 
        , 
        2 
        , 
        … 
        , 
        n 
        } 
       
     
    {\displaystyle \left(r_{j}{\sqrt {{\tfrac {1}{2}}{\bigl (}1+r_{j}^{2}{\bigr )}}},\ (-1)^{\left\lfloor 4j/n\right\rfloor }{\sqrt {{\tfrac {1}{2}}r_{j}^{2}{\bigl (}1-r_{j}^{2}{\bigr )}}}\right),\quad j\in \{1,2,\ldots ,n\}} 
   
 where 
  
    
      
        ⌊ 
        ⋅ 
        ⌋ 
       
     
    {\displaystyle \lfloor \cdot \rfloor } 
   
 floor function . See below  for some specific values of 
  
    
      
        sl 
         
        
          
            
              
                2 
                ϖ 
               
              n 
             
           
         
       
     
    {\displaystyle \operatorname {sl} {\dfrac {2\varpi }{n}}} 
   
 
Arc length of rectangular elastica 
The lemniscate sine relates the arc length to the x coordinate in the rectangular elastica. The inverse lemniscate sine also describes the arc length 
  
    
      
        s 
       
     
    {\displaystyle s} 
   
   relative to the 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   coordinate of the rectangular elastica .[ 36] 
  
    
      
        y 
       
     
    {\displaystyle y} 
   
   coordinate and arc length:
  
    
      
        y 
        = 
        
          ∫ 
          
            x 
           
          
            1 
           
         
        
          
            
              
                t 
                
                  2 
                 
               
              
                
                  d 
                 
                t 
               
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        , 
        s 
        = 
        arcsl 
         
        x 
        = 
        
          ∫ 
          
            0 
           
          
            x 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
       
     
    {\displaystyle y=\int _{x}^{1}{\frac {t^{2}\mathop {\mathrm {d} t} }{\sqrt {1-t^{4}}}},\quad s=\operatorname {arcsl} x=\int _{0}^{x}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}} 
   
 The rectangular elastica solves a problem posed by Jacob Bernoulli , in 1691, to describe the shape of an idealized flexible rod fixed in a vertical orientation at the bottom end, and pulled down by a weight from the far end until it has been bent horizontal. Bernoulli's proposed solution established Euler–Bernoulli beam theory , further developed by Euler in the 18th century.
Elliptic characterization 
The lemniscate elliptic functions and an ellipse Let 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        2 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+2y^{2}=1} 
   
 
  
    
      
        D 
       
     
    {\displaystyle D} 
   
 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 
  
    
      
        r 
       
     
    {\displaystyle r} 
   
 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        φ 
       
     
    {\displaystyle \varphi } 
   
 
  
    
      
        B 
        A 
        C 
       
     
    {\displaystyle BAC} 
   
 
  
    
      
        B 
        = 
        ( 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle B=(1,0)} 
   
 
  
    
      
        B 
        D 
       
     
    {\displaystyle BD} 
   
 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
 
  
    
      
        u 
        = 
        
          ∫ 
          
            0 
           
          
            φ 
           
         
        r 
        ( 
        θ 
        ) 
        
          d 
         
        θ 
        = 
        
          ∫ 
          
            0 
           
          
            φ 
           
         
        
          
            
              
                d 
               
              θ 
             
            
              1 
              + 
              
                sin 
                
                  2 
                 
               
               
              θ 
             
           
         
        . 
       
     
    {\displaystyle u=\int _{0}^{\varphi }r(\theta )\,\mathrm {d} \theta =\int _{0}^{\varphi }{\frac {\mathrm {d} \theta }{\sqrt {1+\sin ^{2}\theta }}}.} 
   
 If 
  
    
      
        E 
       
     
    {\displaystyle E} 
   
 
  
    
      
        D 
       
     
    {\displaystyle D} 
   
 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        cl 
         
        u 
        = 
        
          
            
              A 
              F 
             
            ¯ 
           
         
        , 
        sl 
         
        u 
        = 
        
          
            
              D 
              E 
             
            ¯ 
           
         
        , 
       
     
    {\displaystyle \operatorname {cl} u={\overline {AF}},\quad \operatorname {sl} u={\overline {DE}},} 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
        u 
        = 
        
          
            
              A 
              F 
             
            ¯ 
           
         
        
          
            
              A 
              C 
             
            ¯ 
           
         
        , 
        
          
            
              sl 
              ~ 
             
           
         
        u 
        = 
        
          
            
              A 
              F 
             
            ¯ 
           
         
        
          
            
              F 
              C 
             
            ¯ 
           
         
        . 
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}\,u={\overline {AF}}{\overline {AC}},\quad {\tilde {\operatorname {sl} }}\,u={\overline {AF}}{\overline {FC}}.} 
   
 
Series Identities 
Power series 
The power series  expansion of the lemniscate sine at the origin is[ 37] 
  
    
      
        sl 
         
        z 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          z 
          
            n 
           
         
        = 
        z 
        − 
        12 
        
          
            
              z 
              
                5 
               
             
            
              5 
              ! 
             
           
         
        + 
        3024 
        
          
            
              z 
              
                9 
               
             
            
              9 
              ! 
             
           
         
        − 
        4390848 
        
          
            
              z 
              
                13 
               
             
            
              13 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        
          | 
         
        z 
        
          | 
         
        < 
        
          
            
              ϖ 
              
                2 
               
             
           
         
       
     
    {\displaystyle \operatorname {sl} z=\sum _{n=0}^{\infty }a_{n}z^{n}=z-12{\frac {z^{5}}{5!}}+3024{\frac {z^{9}}{9!}}-4390848{\frac {z^{13}}{13!}}+\cdots ,\quad |z|<{\tfrac {\varpi }{\sqrt {2}}}} 
   
 where the coefficients 
  
    
      
        
          a 
          
            n 
           
         
       
     
    {\displaystyle a_{n}} 
   
 
  
    
      
        n 
        ≢ 
        1 
        
          ( 
          mod 
          4 
          ) 
         
        ⟹ 
        
          a 
          
            n 
           
         
        = 
        0 
        , 
       
     
    {\displaystyle n\not \equiv 1{\pmod {4}}\implies a_{n}=0,} 
   
 
  
    
      
        
          a 
          
            1 
           
         
        = 
        1 
        , 
        ∀ 
        n 
        ∈ 
        
          
            N 
           
          
            0 
           
         
        : 
        
          a 
          
            n 
            + 
            2 
           
         
        = 
        − 
        
          
            2 
            
              ( 
              n 
              + 
              1 
              ) 
              ( 
              n 
              + 
              2 
              ) 
             
           
         
        
          ∑ 
          
            i 
            + 
            j 
            + 
            k 
            = 
            n 
           
         
        
          a 
          
            i 
           
         
        
          a 
          
            j 
           
         
        
          a 
          
            k 
           
         
       
     
    {\displaystyle a_{1}=1,\,\forall n\in \mathbb {N} _{0}:\,a_{n+2}=-{\frac {2}{(n+1)(n+2)}}\sum _{i+j+k=n}a_{i}a_{j}a_{k}} 
   
 where 
  
    
      
        i 
        + 
        j 
        + 
        k 
        = 
        n 
       
     
    {\displaystyle i+j+k=n} 
   
 compositions  of 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        
          a 
          
            13 
           
         
       
     
    {\displaystyle a_{13}} 
   
 
  
    
      
        13 
        − 
        2 
        = 
        11 
       
     
    {\displaystyle 13-2=11} 
   
 
  
    
      
        11 
        = 
        9 
        + 
        1 
        + 
        1 
        = 
        1 
        + 
        9 
        + 
        1 
        = 
        1 
        + 
        1 
        + 
        9 
       
     
    {\displaystyle 11=9+1+1=1+9+1=1+1+9} 
   
 
  
    
      
        11 
        = 
        5 
        + 
        5 
        + 
        1 
        = 
        5 
        + 
        1 
        + 
        5 
        = 
        1 
        + 
        5 
        + 
        5 
       
     
    {\displaystyle 11=5+5+1=5+1+5=1+5+5} 
   
 
  
    
      
        
          a 
          
            13 
           
         
        = 
        − 
        
          
            
              2 
              
                12 
                ⋅ 
                13 
               
             
           
         
        ( 
        
          a 
          
            9 
           
         
        
          a 
          
            1 
           
         
        
          a 
          
            1 
           
         
        + 
        
          a 
          
            1 
           
         
        
          a 
          
            9 
           
         
        
          a 
          
            1 
           
         
        + 
        
          a 
          
            1 
           
         
        
          a 
          
            1 
           
         
        
          a 
          
            9 
           
         
        + 
        
          a 
          
            5 
           
         
        
          a 
          
            5 
           
         
        
          a 
          
            1 
           
         
        + 
        
          a 
          
            5 
           
         
        
          a 
          
            1 
           
         
        
          a 
          
            5 
           
         
        + 
        
          a 
          
            1 
           
         
        
          a 
          
            5 
           
         
        
          a 
          
            5 
           
         
        ) 
        = 
        − 
        
          
            
              11 
              15600 
             
           
         
        . 
       
     
    {\displaystyle a_{13}=-{\tfrac {2}{12\cdot 13}}(a_{9}a_{1}a_{1}+a_{1}a_{9}a_{1}+a_{1}a_{1}a_{9}+a_{5}a_{5}a_{1}+a_{5}a_{1}a_{5}+a_{1}a_{5}a_{5})=-{\tfrac {11}{15600}}.} 
   
 The expansion can be equivalently written as[ 38] 
  
    
      
        sl 
         
        z 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          p 
          
            2 
            n 
           
         
        
          
            
              z 
              
                4 
                n 
                + 
                1 
               
             
            
              ( 
              4 
              n 
              + 
              1 
              ) 
              ! 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            
              2 
             
           
         
       
     
    {\displaystyle \operatorname {sl} z=\sum _{n=0}^{\infty }p_{2n}{\frac {z^{4n+1}}{(4n+1)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}} 
   
 where
  
    
      
        
          p 
          
            n 
            + 
            2 
           
         
        = 
        − 
        12 
        
          ∑ 
          
            j 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              
                2 
                n 
                + 
                2 
               
              
                2 
                j 
                + 
                2 
               
             
            
              ) 
             
           
         
        
          p 
          
            n 
            − 
            j 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            j 
           
         
        
          
            
              ( 
             
            
              
                2 
                j 
                + 
                1 
               
              
                2 
                k 
                + 
                1 
               
             
            
              ) 
             
           
         
        
          p 
          
            k 
           
         
        
          p 
          
            j 
            − 
            k 
           
         
        , 
        
          p 
          
            0 
           
         
        = 
        1 
        , 
        
          p 
          
            1 
           
         
        = 
        0. 
       
     
    {\displaystyle p_{n+2}=-12\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}p_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}p_{k}p_{j-k},\quad p_{0}=1,\,p_{1}=0.} 
   
 The power series expansion of 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}} 
   
 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
        z 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          α 
          
            n 
           
         
        
          z 
          
            n 
           
         
        = 
        z 
        − 
        9 
        
          
            
              z 
              
                3 
               
             
            
              3 
              ! 
             
           
         
        + 
        153 
        
          
            
              z 
              
                5 
               
             
            
              5 
              ! 
             
           
         
        − 
        4977 
        
          
            
              z 
              
                7 
               
             
            
              7 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}\,z=\sum _{n=0}^{\infty }\alpha _{n}z^{n}=z-9{\frac {z^{3}}{3!}}+153{\frac {z^{5}}{5!}}-4977{\frac {z^{7}}{7!}}+\cdots ,\quad \left|z\right|<{\frac {\varpi }{2}}} 
   
 where 
  
    
      
        
          α 
          
            n 
           
         
        = 
        0 
       
     
    {\displaystyle \alpha _{n}=0} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 [ 39] 
  
    
      
        
          α 
          
            n 
           
         
        = 
        
          
            2 
           
         
        
          
            π 
            ϖ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  ( 
                  n 
                  − 
                  1 
                  ) 
                  
                    / 
                   
                  2 
                 
               
             
            
              n 
              ! 
             
           
         
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              ( 
              2 
              k 
              π 
              
                / 
               
              ϖ 
              
                ) 
                
                  n 
                  + 
                  1 
                 
               
             
            
              cosh 
               
              k 
              π 
             
           
         
        , 
        
          | 
          
            α 
            
              n 
             
           
          | 
         
        ∼ 
        
          2 
          
            n 
            + 
            5 
            
              / 
             
            2 
           
         
        
          
            
              n 
              + 
              1 
             
            
              ϖ 
              
                n 
                + 
                2 
               
             
           
         
       
     
    {\displaystyle \alpha _{n}={\sqrt {2}}{\frac {\pi }{\varpi }}{\frac {(-1)^{(n-1)/2}}{n!}}\sum _{k=1}^{\infty }{\frac {(2k\pi /\varpi )^{n+1}}{\cosh k\pi }},\quad \left|\alpha _{n}\right|\sim 2^{n+5/2}{\frac {n+1}{\varpi ^{n+2}}}} 
   
 if 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
The expansion can be equivalently written as[ 40] 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
        z 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              2 
              
                n 
                + 
                1 
               
             
           
         
        
          ( 
          
            
              ∑ 
              
                l 
                = 
                0 
               
              
                n 
               
             
            
              2 
              
                l 
               
             
            
              
                
                  ( 
                 
                
                  
                    2 
                    n 
                    + 
                    2 
                   
                  
                    2 
                    l 
                    + 
                    1 
                   
                 
                
                  ) 
                 
               
             
            
              s 
              
                l 
               
             
            
              t 
              
                n 
                − 
                l 
               
             
           
          ) 
         
        
          
            
              z 
              
                2 
                n 
                + 
                1 
               
             
            
              ( 
              2 
              n 
              + 
              1 
              ) 
              ! 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}\,z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2^{n+1}}}\left(\sum _{l=0}^{n}2^{l}{\binom {2n+2}{2l+1}}s_{l}t_{n-l}\right){\frac {z^{2n+1}}{(2n+1)!}},\quad \left|z\right|<{\frac {\varpi }{2}}} 
   
 where
  
    
      
        
          s 
          
            n 
            + 
            2 
           
         
        = 
        3 
        
          s 
          
            n 
            + 
            1 
           
         
        + 
        24 
        
          ∑ 
          
            j 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              
                2 
                n 
                + 
                2 
               
              
                2 
                j 
                + 
                2 
               
             
            
              ) 
             
           
         
        
          s 
          
            n 
            − 
            j 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            j 
           
         
        
          
            
              ( 
             
            
              
                2 
                j 
                + 
                1 
               
              
                2 
                k 
                + 
                1 
               
             
            
              ) 
             
           
         
        
          s 
          
            k 
           
         
        
          s 
          
            j 
            − 
            k 
           
         
        , 
        
          s 
          
            0 
           
         
        = 
        1 
        , 
        
          s 
          
            1 
           
         
        = 
        3 
        , 
       
     
    {\displaystyle s_{n+2}=3s_{n+1}+24\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}s_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}s_{k}s_{j-k},\quad s_{0}=1,\,s_{1}=3,} 
   
 
  
    
      
        
          t 
          
            n 
            + 
            2 
           
         
        = 
        3 
        
          t 
          
            n 
            + 
            1 
           
         
        + 
        3 
        
          ∑ 
          
            j 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              
                2 
                n 
                + 
                2 
               
              
                2 
                j 
                + 
                2 
               
             
            
              ) 
             
           
         
        
          t 
          
            n 
            − 
            j 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            j 
           
         
        
          
            
              ( 
             
            
              
                2 
                j 
                + 
                1 
               
              
                2 
                k 
                + 
                1 
               
             
            
              ) 
             
           
         
        
          t 
          
            k 
           
         
        
          t 
          
            j 
            − 
            k 
           
         
        , 
        
          t 
          
            0 
           
         
        = 
        1 
        , 
        
          t 
          
            1 
           
         
        = 
        3. 
       
     
    {\displaystyle t_{n+2}=3t_{n+1}+3\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}t_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}t_{k}t_{j-k},\quad t_{0}=1,\,t_{1}=3.} 
   
 For the lemniscate cosine,[ 41] 
  
    
      
        cl 
         
        
          z 
         
        = 
        1 
        − 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          ( 
          
            
              ∑ 
              
                l 
                = 
                0 
               
              
                n 
               
             
            
              2 
              
                l 
               
             
            
              
                
                  ( 
                 
                
                  
                    2 
                    n 
                    + 
                    2 
                   
                  
                    2 
                    l 
                    + 
                    1 
                   
                 
                
                  ) 
                 
               
             
            
              q 
              
                l 
               
             
            
              r 
              
                n 
                − 
                l 
               
             
           
          ) 
         
        
          
            
              z 
              
                2 
                n 
                + 
                2 
               
             
            
              ( 
              2 
              n 
              + 
              2 
              ) 
              ! 
             
           
         
        = 
        1 
        − 
        2 
        
          
            
              z 
              
                2 
               
             
            
              2 
              ! 
             
           
         
        + 
        12 
        
          
            
              z 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        − 
        216 
        
          
            
              z 
              
                6 
               
             
            
              6 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
        , 
       
     
    {\displaystyle \operatorname {cl} {z}=1-\sum _{n=0}^{\infty }(-1)^{n}\left(\sum _{l=0}^{n}2^{l}{\binom {2n+2}{2l+1}}q_{l}r_{n-l}\right){\frac {z^{2n+2}}{(2n+2)!}}=1-2{\frac {z^{2}}{2!}}+12{\frac {z^{4}}{4!}}-216{\frac {z^{6}}{6!}}+\cdots ,\quad \left|z\right|<{\frac {\varpi }{2}},} 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
        z 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          2 
          
            n 
           
         
        
          q 
          
            n 
           
         
        
          
            
              z 
              
                2 
                n 
               
             
            
              ( 
              2 
              n 
              ) 
              ! 
             
           
         
        = 
        1 
        − 
        3 
        
          
            
              z 
              
                2 
               
             
            
              2 
              ! 
             
           
         
        + 
        33 
        
          
            
              z 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        − 
        819 
        
          
            
              z 
              
                6 
               
             
            
              6 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}\,z=\sum _{n=0}^{\infty }(-1)^{n}2^{n}q_{n}{\frac {z^{2n}}{(2n)!}}=1-3{\frac {z^{2}}{2!}}+33{\frac {z^{4}}{4!}}-819{\frac {z^{6}}{6!}}+\cdots ,\quad \left|z\right|<{\frac {\varpi }{2}}} 
   
 where
  
    
      
        
          r 
          
            n 
            + 
            2 
           
         
        = 
        3 
        
          ∑ 
          
            j 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              
                2 
                n 
                + 
                2 
               
              
                2 
                j 
                + 
                2 
               
             
            
              ) 
             
           
         
        
          r 
          
            n 
            − 
            j 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            j 
           
         
        
          
            
              ( 
             
            
              
                2 
                j 
                + 
                1 
               
              
                2 
                k 
                + 
                1 
               
             
            
              ) 
             
           
         
        
          r 
          
            k 
           
         
        
          r 
          
            j 
            − 
            k 
           
         
        , 
        
          r 
          
            0 
           
         
        = 
        1 
        , 
        
          r 
          
            1 
           
         
        = 
        0 
        , 
       
     
    {\displaystyle r_{n+2}=3\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}r_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}r_{k}r_{j-k},\quad r_{0}=1,\,r_{1}=0,} 
   
 
  
    
      
        
          q 
          
            n 
            + 
            2 
           
         
        = 
        
          
            
              3 
              2 
             
           
         
        
          q 
          
            n 
            + 
            1 
           
         
        + 
        6 
        
          ∑ 
          
            j 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              
                2 
                n 
                + 
                2 
               
              
                2 
                j 
                + 
                2 
               
             
            
              ) 
             
           
         
        
          q 
          
            n 
            − 
            j 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            j 
           
         
        
          
            
              ( 
             
            
              
                2 
                j 
                + 
                1 
               
              
                2 
                k 
                + 
                1 
               
             
            
              ) 
             
           
         
        
          q 
          
            k 
           
         
        
          q 
          
            j 
            − 
            k 
           
         
        , 
        
          q 
          
            0 
           
         
        = 
        1 
        , 
        
          q 
          
            1 
           
         
        = 
        
          
            
              3 
              2 
             
           
         
        . 
       
     
    {\displaystyle q_{n+2}={\tfrac {3}{2}}q_{n+1}+6\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}q_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}q_{k}q_{j-k},\quad q_{0}=1,\,q_{1}={\tfrac {3}{2}}.} 
   
 
Ramanujan's famous cos/cosh identity states that if
  
    
      
        R 
        ( 
        s 
        ) 
        = 
        
          
            π 
            
              ϖ 
              
                
                  2 
                 
               
             
           
         
        
          ∑ 
          
            n 
            ∈ 
            
              Z 
             
           
         
        
          
            
              cos 
               
              ( 
              2 
              n 
              π 
              s 
              
                / 
               
              ϖ 
              ) 
             
            
              cosh 
               
              n 
              π 
             
           
         
        , 
       
     
    {\displaystyle R(s)={\frac {\pi }{\varpi {\sqrt {2}}}}\sum _{n\in \mathbb {Z} }{\frac {\cos(2n\pi s/\varpi )}{\cosh n\pi }},} 
   
 then[ 39] 
  
    
      
        R 
        ( 
        s 
        
          ) 
          
            − 
            2 
           
         
        + 
        R 
        ( 
        i 
        s 
        
          ) 
          
            − 
            2 
           
         
        = 
        2 
        , 
        
          | 
          
            Re 
             
            s 
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
        , 
        
          | 
          
            Im 
             
            s 
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
        . 
       
     
    {\displaystyle R(s)^{-2}+R(is)^{-2}=2,\quad \left|\operatorname {Re} s\right|<{\frac {\varpi }{2}},\left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}.} 
   
 There is a close relation between the lemniscate functions and 
  
    
      
        R 
        ( 
        s 
        ) 
       
     
    {\displaystyle R(s)} 
   
 [ 39] [ 42] 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
        s 
        = 
        − 
        
          
            
              d 
             
            
              
                d 
               
              s 
             
           
         
        R 
        ( 
        s 
        ) 
        
          | 
          
            Im 
             
            s 
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}\,s=-{\frac {\mathrm {d} }{\mathrm {d} s}}R(s)\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}} 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
        s 
        = 
        
          
            
              d 
             
            
              
                d 
               
              s 
             
           
         
        
          
            1 
            − 
            R 
            ( 
            s 
            
              ) 
              
                2 
               
             
           
         
        , 
        
          | 
          
            Re 
             
            s 
            − 
            
              
                ϖ 
                2 
               
             
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
        , 
        
          | 
          
            Im 
             
            s 
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}\,s={\frac {\mathrm {d} }{\mathrm {d} s}}{\sqrt {1-R(s)^{2}}},\quad \left|\operatorname {Re} s-{\frac {\varpi }{2}}\right|<{\frac {\varpi }{2}},\,\left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}} 
   
 and
  
    
      
        R 
        ( 
        s 
        ) 
        = 
        
          
            1 
            
              1 
              + 
              
                sl 
                
                  2 
                 
               
               
              s 
             
           
         
        , 
        
          | 
          
            Im 
             
            s 
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
        . 
       
     
    {\displaystyle R(s)={\frac {1}{\sqrt {1+\operatorname {sl} ^{2}s}}},\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}.} 
   
 
Continued fractions 
For 
  
    
      
        z 
        ∈ 
        
          C 
         
        ∖ 
        { 
        0 
        } 
       
     
    {\displaystyle z\in \mathbb {C} \setminus \{0\}} 
   
 [ 43] 
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            t 
            z 
            
              
                2 
               
             
           
         
        cl 
         
        t 
        
          d 
         
        t 
        = 
        
          
            
              
                 
              
                
                  1 
                  
                    / 
                   
                  
                    
                      2 
                     
                   
                 
               
             
            
              
                 
              
                
                  z 
                  + 
                  
                    
                      
                        
                           
                        
                          
                            
                              a 
                              
                                1 
                               
                             
                           
                         
                       
                      
                        
                           
                        
                          
                            z 
                            + 
                            
                              
                                
                                  
                                     
                                  
                                    
                                      
                                        a 
                                        
                                          2 
                                         
                                       
                                     
                                   
                                 
                                
                                  
                                     
                                  
                                    
                                      z 
                                      + 
                                      
                                        
                                          
                                            
                                               
                                            
                                              
                                                
                                                  a 
                                                  
                                                    3 
                                                   
                                                 
                                               
                                             
                                           
                                          
                                            
                                               
                                            
                                              
                                                z 
                                                + 
                                                ⋱ 
                                               
                                             
                                           
                                         
                                       
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
           
         
        , 
        
          a 
          
            n 
           
         
        = 
        
          
            
              n 
              
                2 
               
             
            4 
           
         
        ( 
        ( 
        − 
        1 
        
          ) 
          
            n 
            + 
            1 
           
         
        + 
        3 
        ) 
       
     
    {\displaystyle \int _{0}^{\infty }e^{-tz{\sqrt {2}}}\operatorname {cl} t\,\mathrm {d} t={\cfrac {1/{\sqrt {2}}}{z+{\cfrac {a_{1}}{z+{\cfrac {a_{2}}{z+{\cfrac {a_{3}}{z+\ddots }}}}}}}},\quad a_{n}={\frac {n^{2}}{4}}((-1)^{n+1}+3)} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            t 
            z 
            
              
                2 
               
             
           
         
        sl 
         
        t 
        cl 
         
        t 
        
          d 
         
        t 
        = 
        
          
            
              
                 
              
                
                  1 
                  
                    / 
                   
                  2 
                 
               
             
            
              
                 
              
                
                  
                    z 
                    
                      2 
                     
                   
                  + 
                  
                    b 
                    
                      1 
                     
                   
                  − 
                  
                    
                      
                        
                           
                        
                          
                            
                              a 
                              
                                1 
                               
                             
                           
                         
                       
                      
                        
                           
                        
                          
                            
                              z 
                              
                                2 
                               
                             
                            + 
                            
                              b 
                              
                                2 
                               
                             
                            − 
                            
                              
                                
                                  
                                     
                                  
                                    
                                      
                                        a 
                                        
                                          2 
                                         
                                       
                                     
                                   
                                 
                                
                                  
                                     
                                  
                                    
                                      
                                        z 
                                        
                                          2 
                                         
                                       
                                      + 
                                      
                                        b 
                                        
                                          3 
                                         
                                       
                                      − 
                                      ⋱ 
                                     
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
           
         
        , 
        
          a 
          
            n 
           
         
        = 
        
          n 
          
            2 
           
         
        ( 
        4 
        
          n 
          
            2 
           
         
        − 
        1 
        ) 
        , 
        
          b 
          
            n 
           
         
        = 
        3 
        ( 
        2 
        n 
        − 
        1 
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle \int _{0}^{\infty }e^{-tz{\sqrt {2}}}\operatorname {sl} t\operatorname {cl} t\,\mathrm {d} t={\cfrac {1/2}{z^{2}+b_{1}-{\cfrac {a_{1}}{z^{2}+b_{2}-{\cfrac {a_{2}}{z^{2}+b_{3}-\ddots }}}}}},\quad a_{n}=n^{2}(4n^{2}-1),\,b_{n}=3(2n-1)^{2}} 
   
 
Methods of computation 
Several methods of computing 
  
    
      
        sl 
         
        x 
       
     
    {\displaystyle \operatorname {sl} x} 
   
 
  
    
      
        π 
        x 
        = 
        ϖ 
        
          
            
              x 
              ~ 
             
           
         
       
     
    {\displaystyle \pi x=\varpi {\tilde {x}}} 
   
 
  
    
      
        sl 
         
        ( 
        ϖ 
        
          
            
              x 
              ~ 
             
           
         
        
          / 
         
        π 
        ) 
        . 
       
     
    {\displaystyle \operatorname {sl} (\varpi {\tilde {x}}/\pi ).} 
   
 
A hyperbolic  series method:[ 46] [ 47] 
  
    
      
        sl 
         
        
          ( 
          
            
              
                ϖ 
                π 
               
             
            x 
           
          ) 
         
        = 
        
          
            π 
            ϖ 
           
         
        
          ∑ 
          
            n 
            ∈ 
            
              Z 
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              cosh 
               
              ( 
              x 
              − 
              ( 
              n 
              + 
              1 
              
                / 
               
              2 
              ) 
              π 
              ) 
             
           
         
        , 
        x 
        ∈ 
        
          C 
         
       
     
    {\displaystyle \operatorname {sl} \left({\frac {\varpi }{\pi }}x\right)={\frac {\pi }{\varpi }}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{\cosh(x-(n+1/2)\pi )}},\quad x\in \mathbb {C} } 
   
 
  
    
      
        
          
            1 
            
              sl 
               
              ( 
              ϖ 
              x 
              
                / 
               
              π 
              ) 
             
           
         
        = 
        
          
            π 
            ϖ 
           
         
        
          ∑ 
          
            n 
            ∈ 
            
              Z 
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              
                sinh 
               
              
                
                  ( 
                  
                    x 
                    − 
                    n 
                    π 
                   
                  ) 
                 
               
             
           
         
        = 
        
          
            π 
            ϖ 
           
         
        
          ∑ 
          
            n 
            ∈ 
            
              Z 
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              sin 
               
              ( 
              x 
              − 
              n 
              π 
              i 
              ) 
             
           
         
        , 
        x 
        ∈ 
        
          C 
         
       
     
    {\displaystyle {\frac {1}{\operatorname {sl} (\varpi x/\pi )}}={\frac {\pi }{\varpi }}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{{\sinh }{\left(x-n\pi \right)}}}={\frac {\pi }{\varpi }}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{\sin(x-n\pi i)}},\quad x\in \mathbb {C} } 
   
 Fourier series  method:[ 48] 
  
    
      
        sl 
         
        
          
            ( 
           
         
        
          
            ϖ 
            π 
           
         
        x 
        
          
            ) 
           
         
        = 
        
          
            
              2 
              π 
             
            ϖ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
              sin 
               
              ( 
              ( 
              2 
              n 
              + 
              1 
              ) 
              x 
              ) 
             
            
              cosh 
               
              ( 
              ( 
              n 
              + 
              1 
              
                / 
               
              2 
              ) 
              π 
              ) 
             
           
         
        , 
        
          | 
          
            Im 
             
            x 
           
          | 
         
        < 
        
          
            π 
            2 
           
         
       
     
    {\displaystyle \operatorname {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}={\frac {2\pi }{\varpi }}\sum _{n=0}^{\infty }{\frac {(-1)^{n}\sin((2n+1)x)}{\cosh((n+1/2)\pi )}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}} 
   
 
  
    
      
        cl 
         
        
          ( 
          
            
              
                ϖ 
                π 
               
             
            x 
           
          ) 
         
        = 
        
          
            
              2 
              π 
             
            ϖ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              cos 
               
              ( 
              ( 
              2 
              n 
              + 
              1 
              ) 
              x 
              ) 
             
            
              cosh 
               
              ( 
              ( 
              n 
              + 
              1 
              
                / 
               
              2 
              ) 
              π 
              ) 
             
           
         
        , 
        
          | 
          
            Im 
             
            x 
           
          | 
         
        < 
        
          
            π 
            2 
           
         
       
     
    {\displaystyle \operatorname {cl} \left({\frac {\varpi }{\pi }}x\right)={\frac {2\pi }{\varpi }}\sum _{n=0}^{\infty }{\frac {\cos((2n+1)x)}{\cosh((n+1/2)\pi )}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}} 
   
 
  
    
      
        
          
            1 
            
              sl 
               
              ( 
              ϖ 
              x 
              
                / 
               
              π 
              ) 
             
           
         
        = 
        
          
            π 
            ϖ 
           
         
        
          ( 
          
            
              
                1 
                
                  sin 
                   
                  x 
                 
               
             
            − 
            4 
            
              ∑ 
              
                n 
                = 
                0 
               
              
                ∞ 
               
             
            
              
                
                  sin 
                   
                  ( 
                  ( 
                  2 
                  n 
                  + 
                  1 
                  ) 
                  x 
                  ) 
                 
                
                  
                    e 
                    
                      ( 
                      2 
                      n 
                      + 
                      1 
                      ) 
                      π 
                     
                   
                  + 
                  1 
                 
               
             
           
          ) 
         
        , 
        
          | 
          
            Im 
             
            x 
           
          | 
         
        < 
        π 
       
     
    {\displaystyle {\frac {1}{\operatorname {sl} (\varpi x/\pi )}}={\frac {\pi }{\varpi }}\left({\frac {1}{\sin x}}-4\sum _{n=0}^{\infty }{\frac {\sin((2n+1)x)}{e^{(2n+1)\pi }+1}}\right),\quad \left|\operatorname {Im} x\right|<\pi } 
   
 The lemniscate functions can be computed more rapidly by
  
    
      
        
          
            
              
                sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    ϖ 
                    π 
                   
                 
                x 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      
                        
                          θ 
                          
                            1 
                           
                         
                       
                      
                        
                          ( 
                          
                            x 
                            , 
                            
                              e 
                              
                                − 
                                π 
                               
                             
                           
                          ) 
                         
                       
                     
                    
                      
                        
                          θ 
                          
                            3 
                           
                         
                       
                      
                        
                          ( 
                          
                            x 
                            , 
                            
                              e 
                              
                                − 
                                π 
                               
                             
                           
                          ) 
                         
                       
                     
                   
                 
                , 
                x 
                ∈ 
                
                  C 
                 
               
             
            
              
                cl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    ϖ 
                    π 
                   
                 
                x 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  
                    
                      
                        
                          θ 
                          
                            2 
                           
                         
                       
                      
                        
                          ( 
                          
                            x 
                            , 
                            
                              e 
                              
                                − 
                                π 
                               
                             
                           
                          ) 
                         
                       
                     
                    
                      
                        
                          θ 
                          
                            4 
                           
                         
                       
                      
                        
                          ( 
                          
                            x 
                            , 
                            
                              e 
                              
                                − 
                                π 
                               
                             
                           
                          ) 
                         
                       
                     
                   
                 
                , 
                x 
                ∈ 
                
                  C 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}&={\frac {{\theta _{1}}{\left(x,e^{-\pi }\right)}}{{\theta _{3}}{\left(x,e^{-\pi }\right)}}},\quad x\in \mathbb {C} \\\operatorname {cl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}&={\frac {{\theta _{2}}{\left(x,e^{-\pi }\right)}}{{\theta _{4}}{\left(x,e^{-\pi }\right)}}},\quad x\in \mathbb {C} \end{aligned}}} 
   
 where
  
    
      
        
          
            
              
                
                  θ 
                  
                    1 
                   
                 
                ( 
                x 
                , 
                
                  e 
                  
                    − 
                    π 
                   
                 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    n 
                    + 
                    1 
                   
                 
                
                  e 
                  
                    − 
                    π 
                    ( 
                    n 
                    + 
                    1 
                    
                      / 
                     
                    2 
                    + 
                    x 
                    
                      / 
                     
                    π 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    n 
                   
                 
                
                  e 
                  
                    − 
                    π 
                    ( 
                    n 
                    + 
                    1 
                    
                      / 
                     
                    2 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                sin 
                 
                ( 
                ( 
                2 
                n 
                + 
                1 
                ) 
                x 
                ) 
                , 
               
             
            
              
                
                  θ 
                  
                    2 
                   
                 
                ( 
                x 
                , 
                
                  e 
                  
                    − 
                    π 
                   
                 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    n 
                   
                 
                
                  e 
                  
                    − 
                    π 
                    ( 
                    n 
                    + 
                    x 
                    
                      / 
                     
                    π 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                
                  e 
                  
                    − 
                    π 
                    ( 
                    n 
                    + 
                    1 
                    
                      / 
                     
                    2 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                cos 
                 
                ( 
                ( 
                2 
                n 
                + 
                1 
                ) 
                x 
                ) 
                , 
               
             
            
              
                
                  θ 
                  
                    3 
                   
                 
                ( 
                x 
                , 
                
                  e 
                  
                    − 
                    π 
                   
                 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                
                  e 
                  
                    − 
                    π 
                    ( 
                    n 
                    + 
                    x 
                    
                      / 
                     
                    π 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                
                  e 
                  
                    − 
                    π 
                    
                      n 
                      
                        2 
                       
                     
                   
                 
                cos 
                 
                2 
                n 
                x 
                , 
               
             
            
              
                
                  θ 
                  
                    4 
                   
                 
                ( 
                x 
                , 
                
                  e 
                  
                    − 
                    π 
                   
                 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                
                  e 
                  
                    − 
                    π 
                    ( 
                    n 
                    + 
                    1 
                    
                      / 
                     
                    2 
                    + 
                    x 
                    
                      / 
                     
                    π 
                    
                      ) 
                      
                        2 
                       
                     
                   
                 
                = 
                
                  ∑ 
                  
                    n 
                    ∈ 
                    
                      Z 
                     
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    n 
                   
                 
                
                  e 
                  
                    − 
                    π 
                    
                      n 
                      
                        2 
                       
                     
                   
                 
                cos 
                 
                2 
                n 
                x 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\theta _{1}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }(-1)^{n+1}e^{-\pi (n+1/2+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi (n+1/2)^{2}}\sin((2n+1)x),\\\theta _{2}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi (n+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }e^{-\pi (n+1/2)^{2}}\cos((2n+1)x),\\\theta _{3}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }e^{-\pi (n+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }e^{-\pi n^{2}}\cos 2nx,\\\theta _{4}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }e^{-\pi (n+1/2+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi n^{2}}\cos 2nx\end{aligned}}} 
   
 are the Jacobi theta functions .[ 49] 
Fourier series for the logarithm of the lemniscate sine:
  
    
      
        ln 
         
        sl 
         
        
          ( 
          
            
              
                ϖ 
                π 
               
             
            x 
           
          ) 
         
        = 
        ln 
         
        2 
        − 
        
          
            π 
            4 
           
         
        + 
        ln 
         
        sin 
         
        x 
        + 
        2 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
              cos 
               
              2 
              n 
              x 
             
            
              n 
              ( 
              
                e 
                
                  n 
                  π 
                 
               
              + 
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
              ) 
             
           
         
        , 
        
          | 
          
            Im 
             
            x 
           
          | 
         
        < 
        
          
            π 
            2 
           
         
       
     
    {\displaystyle \ln \operatorname {sl} \left({\frac {\varpi }{\pi }}x\right)=\ln 2-{\frac {\pi }{4}}+\ln \sin x+2\sum _{n=1}^{\infty }{\frac {(-1)^{n}\cos 2nx}{n(e^{n\pi }+(-1)^{n})}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}} 
   
 The following series identities were discovered by Ramanujan :[ 50] 
  
    
      
        
          
            
              ϖ 
              
                2 
               
             
            
              
                π 
                
                  2 
                 
               
              
                sl 
                
                  2 
                 
               
               
              ( 
              ϖ 
              x 
              
                / 
               
              π 
              ) 
             
           
         
        = 
        
          
            1 
            
              
                sin 
                
                  2 
                 
               
               
              x 
             
           
         
        − 
        
          
            1 
            π 
           
         
        − 
        8 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              n 
              cos 
               
              2 
              n 
              x 
             
            
              
                e 
                
                  2 
                  n 
                  π 
                 
               
              − 
              1 
             
           
         
        , 
        
          | 
          
            Im 
             
            x 
           
          | 
         
        < 
        π 
       
     
    {\displaystyle {\frac {\varpi ^{2}}{\pi ^{2}\operatorname {sl} ^{2}(\varpi x/\pi )}}={\frac {1}{\sin ^{2}x}}-{\frac {1}{\pi }}-8\sum _{n=1}^{\infty }{\frac {n\cos 2nx}{e^{2n\pi }-1}},\quad \left|\operatorname {Im} x\right|<\pi } 
   
 
  
    
      
        arctan 
         
        sl 
         
        
          
            ( 
           
         
        
          
            ϖ 
            π 
           
         
        x 
        
          
            ) 
           
         
        = 
        2 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              sin 
               
              ( 
              ( 
              2 
              n 
              + 
              1 
              ) 
              x 
              ) 
             
            
              ( 
              2 
              n 
              + 
              1 
              ) 
              cosh 
               
              ( 
              ( 
              n 
              + 
              1 
              
                / 
               
              2 
              ) 
              π 
              ) 
             
           
         
        , 
        
          | 
          
            Im 
             
            x 
           
          | 
         
        < 
        
          
            π 
            2 
           
         
       
     
    {\displaystyle \arctan \operatorname {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}=2\sum _{n=0}^{\infty }{\frac {\sin((2n+1)x)}{(2n+1)\cosh((n+1/2)\pi )}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}} 
   
 The functions 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}} 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}} 
   
 
  
    
      
        sin 
       
     
    {\displaystyle \sin } 
   
 
  
    
      
        cos 
       
     
    {\displaystyle \cos } 
   
 [ 39] [ 42] [ 51] 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
        s 
        = 
        2 
        
          
            2 
           
         
        
          
            
              π 
              
                2 
               
             
            
              ϖ 
              
                2 
               
             
           
         
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              n 
              sin 
               
              ( 
              2 
              n 
              π 
              s 
              
                / 
               
              ϖ 
              ) 
             
            
              cosh 
               
              n 
              π 
             
           
         
        , 
        
          | 
          
            Im 
             
            s 
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}\,s=2{\sqrt {2}}{\frac {\pi ^{2}}{\varpi ^{2}}}\sum _{n=1}^{\infty }{\frac {n\sin(2n\pi s/\varpi )}{\cosh n\pi }},\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}} 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
        s 
        = 
        
          
            2 
           
         
        
          
            
              π 
              
                2 
               
             
            
              ϖ 
              
                2 
               
             
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              2 
              n 
              + 
              1 
              ) 
              cos 
               
              ( 
              ( 
              2 
              n 
              + 
              1 
              ) 
              π 
              s 
              
                / 
               
              ϖ 
              ) 
             
            
              sinh 
               
              ( 
              ( 
              n 
              + 
              1 
              
                / 
               
              2 
              ) 
              π 
              ) 
             
           
         
        , 
        
          | 
          
            Im 
             
            s 
           
          | 
         
        < 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}\,s={\sqrt {2}}{\frac {\pi ^{2}}{\varpi ^{2}}}\sum _{n=0}^{\infty }{\frac {(2n+1)\cos((2n+1)\pi s/\varpi )}{\sinh((n+1/2)\pi )}},\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}} 
   
 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
        s 
        = 
        
          
            
              π 
              
                2 
               
             
            
              
                ϖ 
                
                  2 
                 
               
              
                
                  2 
                 
               
             
           
         
        
          ∑ 
          
            n 
            ∈ 
            
              Z 
             
           
         
        
          
            
              sinh 
               
              ( 
              π 
              ( 
              n 
              + 
              s 
              
                / 
               
              ϖ 
              ) 
              ) 
             
            
              
                cosh 
                
                  2 
                 
               
               
              ( 
              π 
              ( 
              n 
              + 
              s 
              
                / 
               
              ϖ 
              ) 
              ) 
             
           
         
        , 
        s 
        ∈ 
        
          C 
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}\,s={\frac {\pi ^{2}}{\varpi ^{2}{\sqrt {2}}}}\sum _{n\in \mathbb {Z} }{\frac {\sinh(\pi (n+s/\varpi ))}{\cosh ^{2}(\pi (n+s/\varpi ))}},\quad s\in \mathbb {C} } 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
        s 
        = 
        
          
            
              π 
              
                2 
               
             
            
              
                ϖ 
                
                  2 
                 
               
              
                
                  2 
                 
               
             
           
         
        
          ∑ 
          
            n 
            ∈ 
            
              Z 
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              
                cosh 
                
                  2 
                 
               
               
              ( 
              π 
              ( 
              n 
              + 
              s 
              
                / 
               
              ϖ 
              ) 
              ) 
             
           
         
        , 
        s 
        ∈ 
        
          C 
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}\,s={\frac {\pi ^{2}}{\varpi ^{2}{\sqrt {2}}}}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{\cosh ^{2}(\pi (n+s/\varpi ))}},\quad s\in \mathbb {C} } 
   
 The following identities come from product representations of the theta functions:[ 52] 
  
    
      
        
          s 
          l 
         
        
          
            ( 
           
         
        
          
            ϖ 
            π 
           
         
        x 
        
          
            ) 
           
         
        = 
        2 
        
          e 
          
            − 
            π 
            
              / 
             
            4 
           
         
        sin 
         
        x 
        
          ∏ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              1 
              − 
              2 
              
                e 
                
                  − 
                  2 
                  n 
                  π 
                 
               
              cos 
               
              2 
              x 
              + 
              
                e 
                
                  − 
                  4 
                  n 
                  π 
                 
               
             
            
              1 
              + 
              2 
              
                e 
                
                  − 
                  ( 
                  2 
                  n 
                  − 
                  1 
                  ) 
                  π 
                 
               
              cos 
               
              2 
              x 
              + 
              
                e 
                
                  − 
                  ( 
                  4 
                  n 
                  − 
                  2 
                  ) 
                  π 
                 
               
             
           
         
        , 
        x 
        ∈ 
        
          C 
         
       
     
    {\displaystyle \mathrm {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}=2e^{-\pi /4}\sin x\prod _{n=1}^{\infty }{\frac {1-2e^{-2n\pi }\cos 2x+e^{-4n\pi }}{1+2e^{-(2n-1)\pi }\cos 2x+e^{-(4n-2)\pi }}},\quad x\in \mathbb {C} } 
   
 
  
    
      
        
          c 
          l 
         
        
          
            ( 
           
         
        
          
            ϖ 
            π 
           
         
        x 
        
          
            ) 
           
         
        = 
        2 
        
          e 
          
            − 
            π 
            
              / 
             
            4 
           
         
        cos 
         
        x 
        
          ∏ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              1 
              + 
              2 
              
                e 
                
                  − 
                  2 
                  n 
                  π 
                 
               
              cos 
               
              2 
              x 
              + 
              
                e 
                
                  − 
                  4 
                  n 
                  π 
                 
               
             
            
              1 
              − 
              2 
              
                e 
                
                  − 
                  ( 
                  2 
                  n 
                  − 
                  1 
                  ) 
                  π 
                 
               
              cos 
               
              2 
              x 
              + 
              
                e 
                
                  − 
                  ( 
                  4 
                  n 
                  − 
                  2 
                  ) 
                  π 
                 
               
             
           
         
        , 
        x 
        ∈ 
        
          C 
         
       
     
    {\displaystyle \mathrm {cl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}=2e^{-\pi /4}\cos x\prod _{n=1}^{\infty }{\frac {1+2e^{-2n\pi }\cos 2x+e^{-4n\pi }}{1-2e^{-(2n-1)\pi }\cos 2x+e^{-(4n-2)\pi }}},\quad x\in \mathbb {C} } 
   
 A similar formula involving the 
  
    
      
        sn 
       
     
    {\displaystyle \operatorname {sn} } 
   
 [ 53] 
The lemniscate functions as a ratio of entire functions 
Since the lemniscate sine is a meromorphic function in the whole complex plane, it can be written as a ratio of entire functions . Gauss showed that sl  has the following product expansion, reflecting the distribution of its zeros and poles:[ 54] 
  
    
      
        sl 
         
        z 
        = 
        
          
            
              M 
              ( 
              z 
              ) 
             
            
              N 
              ( 
              z 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {sl} z={\frac {M(z)}{N(z)}}} 
   
 where
  
    
      
        M 
        ( 
        z 
        ) 
        = 
        z 
        
          ∏ 
          
            α 
           
         
        
          ( 
          
            1 
            − 
            
              
                
                  z 
                  
                    4 
                   
                 
                
                  α 
                  
                    4 
                   
                 
               
             
           
          ) 
         
        , 
        N 
        ( 
        z 
        ) 
        = 
        
          ∏ 
          
            β 
           
         
        
          ( 
          
            1 
            − 
            
              
                
                  z 
                  
                    4 
                   
                 
                
                  β 
                  
                    4 
                   
                 
               
             
           
          ) 
         
        . 
       
     
    {\displaystyle M(z)=z\prod _{\alpha }\left(1-{\frac {z^{4}}{\alpha ^{4}}}\right),\quad N(z)=\prod _{\beta }\left(1-{\frac {z^{4}}{\beta ^{4}}}\right).} 
   
 Here, 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 sl  which are in the quadrant 
  
    
      
        Re 
         
        z 
        > 
        0 
        , 
        Im 
         
        z 
        ≥ 
        0 
       
     
    {\displaystyle \operatorname {Re} z>0,\operatorname {Im} z\geq 0} 
   
 [ 54] [ 55] uniform convergence .[ 56] 
Proof of the infinite product for the lemniscate sine
 
Proof by logarithmic differentiation 
It can be easily seen (using uniform and absolute  convergence arguments to justify interchanging of limiting operations ) that
  
    
      
        
          
            
              
                M 
                ′ 
               
              ( 
              z 
              ) 
             
            
              M 
              ( 
              z 
              ) 
             
           
         
        = 
        − 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          2 
          
            4 
            n 
           
         
        
          
            H 
           
          
            4 
            n 
           
         
        
          
            
              z 
              
                4 
                n 
                − 
                1 
               
             
            
              ( 
              4 
              n 
              ) 
              ! 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        ϖ 
       
     
    {\displaystyle {\frac {M'(z)}{M(z)}}=-\sum _{n=0}^{\infty }2^{4n}\mathrm {H} _{4n}{\frac {z^{4n-1}}{(4n)!}},\quad \left|z\right|<\varpi } 
   
 (where 
  
    
      
        
          
            H 
           
          
            n 
           
         
       
     
    {\displaystyle \mathrm {H} _{n}} 
   
 Lemniscate elliptic functions § Hurwitz numbers ) and
  
    
      
        
          
            
              
                N 
                ′ 
               
              ( 
              z 
              ) 
             
            
              N 
              ( 
              z 
              ) 
             
           
         
        = 
        ( 
        1 
        + 
        i 
        ) 
        
          
            
              
                M 
                ′ 
               
              ( 
              ( 
              1 
              + 
              i 
              ) 
              z 
              ) 
             
            
              M 
              ( 
              ( 
              1 
              + 
              i 
              ) 
              z 
              ) 
             
           
         
        − 
        
          
            
              
                M 
                ′ 
               
              ( 
              z 
              ) 
             
            
              M 
              ( 
              z 
              ) 
             
           
         
        . 
       
     
    {\displaystyle {\frac {N'(z)}{N(z)}}=(1+i){\frac {M'((1+i)z)}{M((1+i)z)}}-{\frac {M'(z)}{M(z)}}.} 
   
 Therefore
  
    
      
        
          
            
              
                N 
                ′ 
               
              ( 
              z 
              ) 
             
            
              N 
              ( 
              z 
              ) 
             
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          2 
          
            4 
            n 
           
         
        ( 
        1 
        − 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          2 
          
            2 
            n 
           
         
        ) 
        
          
            H 
           
          
            4 
            n 
           
         
        
          
            
              z 
              
                4 
                n 
                − 
                1 
               
             
            
              ( 
              4 
              n 
              ) 
              ! 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            
              2 
             
           
         
        . 
       
     
    {\displaystyle {\frac {N'(z)}{N(z)}}=\sum _{n=0}^{\infty }2^{4n}(1-(-1)^{n}2^{2n})\mathrm {H} _{4n}{\frac {z^{4n-1}}{(4n)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}.} 
   
 It is known that
  
    
      
        
          
            1 
            
              
                sl 
                
                  2 
                 
               
               
              z 
             
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          2 
          
            4 
            n 
           
         
        ( 
        4 
        n 
        − 
        1 
        ) 
        
          
            H 
           
          
            4 
            n 
           
         
        
          
            
              z 
              
                4 
                n 
                − 
                2 
               
             
            
              ( 
              4 
              n 
              ) 
              ! 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        ϖ 
        . 
       
     
    {\displaystyle {\frac {1}{\operatorname {sl} ^{2}z}}=\sum _{n=0}^{\infty }2^{4n}(4n-1)\mathrm {H} _{4n}{\frac {z^{4n-2}}{(4n)!}},\quad \left|z\right|<\varpi .} 
   
 Then from
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              z 
             
           
         
        
          
            
              
                sl 
                ′ 
               
               
              z 
             
            
              sl 
               
              z 
             
           
         
        = 
        − 
        
          
            1 
            
              
                sl 
                
                  2 
                 
               
               
              z 
             
           
         
        − 
        
          sl 
          
            2 
           
         
         
        z 
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}{\frac {\operatorname {sl} 'z}{\operatorname {sl} z}}=-{\frac {1}{\operatorname {sl} ^{2}z}}-\operatorname {sl} ^{2}z} 
   
 and
  
    
      
        
          sl 
          
            2 
           
         
         
        z 
        = 
        
          
            1 
            
              
                sl 
                
                  2 
                 
               
               
              z 
             
           
         
        − 
        
          
            
              ( 
              1 
              + 
              i 
              
                ) 
                
                  2 
                 
               
             
            
              
                sl 
                
                  2 
                 
               
               
              ( 
              ( 
              1 
              + 
              i 
              ) 
              z 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {sl} ^{2}z={\frac {1}{\operatorname {sl} ^{2}z}}-{\frac {(1+i)^{2}}{\operatorname {sl} ^{2}((1+i)z)}}} 
   
 we get
  
    
      
        
          
            
              
                sl 
                ′ 
               
               
              z 
             
            
              sl 
               
              z 
             
           
         
        = 
        − 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          2 
          
            4 
            n 
           
         
        ( 
        2 
        − 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          2 
          
            2 
            n 
           
         
        ) 
        
          
            H 
           
          
            4 
            n 
           
         
        
          
            
              z 
              
                4 
                n 
                − 
                1 
               
             
            
              ( 
              4 
              n 
              ) 
              ! 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            
              2 
             
           
         
        . 
       
     
    {\displaystyle {\frac {\operatorname {sl} 'z}{\operatorname {sl} z}}=-\sum _{n=0}^{\infty }2^{4n}(2-(-1)^{n}2^{2n})\mathrm {H} _{4n}{\frac {z^{4n-1}}{(4n)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}.} 
   
 Hence
  
    
      
        
          
            
              
                sl 
                ′ 
               
               
              z 
             
            
              sl 
               
              z 
             
           
         
        = 
        
          
            
              
                M 
                ′ 
               
              ( 
              z 
              ) 
             
            
              M 
              ( 
              z 
              ) 
             
           
         
        − 
        
          
            
              
                N 
                ′ 
               
              ( 
              z 
              ) 
             
            
              N 
              ( 
              z 
              ) 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        
          
            ϖ 
            
              2 
             
           
         
        . 
       
     
    {\displaystyle {\frac {\operatorname {sl} 'z}{\operatorname {sl} z}}={\frac {M'(z)}{M(z)}}-{\frac {N'(z)}{N(z)}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}.} 
   
 Therefore
  
    
      
        sl 
         
        z 
        = 
        C 
        
          
            
              M 
              ( 
              z 
              ) 
             
            
              N 
              ( 
              z 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {sl} z=C{\frac {M(z)}{N(z)}}} 
   
 for some constant 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        
          | 
          z 
          | 
         
        < 
        ϖ 
        
          / 
         
        
          
            2 
           
         
       
     
    {\displaystyle \left|z\right|<\varpi /{\sqrt {2}}} 
   
 
  
    
      
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle z\in \mathbb {C} } 
   
 
  
    
      
        
          lim 
          
            z 
            → 
            0 
           
         
        
          
            
              sl 
               
              z 
             
            z 
           
         
        = 
        1 
       
     
    {\displaystyle \lim _{z\to 0}{\frac {\operatorname {sl} z}{z}}=1} 
   
 gives 
  
    
      
        C 
        = 
        1 
       
     
    {\displaystyle C=1} 
   
 
  
    
      
        ◼ 
       
     
    {\displaystyle \blacksquare } 
   
 
Proof by Liouville's theorem 
Let
  
    
      
        f 
        ( 
        z 
        ) 
        = 
        
          
            
              M 
              ( 
              z 
              ) 
             
            
              N 
              ( 
              z 
              ) 
             
           
         
        = 
        
          
            
              ( 
              1 
              + 
              i 
              ) 
              M 
              ( 
              z 
              
                ) 
                
                  2 
                 
               
             
            
              M 
              ( 
              ( 
              1 
              + 
              i 
              ) 
              z 
              ) 
             
           
         
        , 
       
     
    {\displaystyle f(z)={\frac {M(z)}{N(z)}}={\frac {(1+i)M(z)^{2}}{M((1+i)z)}},} 
   
 with patches at removable singularities.
The shifting formulas
  
    
      
        M 
        ( 
        z 
        + 
        2 
        ϖ 
        ) 
        = 
        
          e 
          
            2 
            
              
                π 
                ϖ 
               
             
            ( 
            z 
            + 
            ϖ 
            ) 
           
         
        M 
        ( 
        z 
        ) 
        , 
        M 
        ( 
        z 
        + 
        2 
        ϖ 
        i 
        ) 
        = 
        
          e 
          
            − 
            2 
            
              
                π 
                ϖ 
               
             
            ( 
            i 
            z 
            − 
            ϖ 
            ) 
           
         
        M 
        ( 
        z 
        ) 
       
     
    {\displaystyle M(z+2\varpi )=e^{2{\frac {\pi }{\varpi }}(z+\varpi )}M(z),\quad M(z+2\varpi i)=e^{-2{\frac {\pi }{\varpi }}(iz-\varpi )}M(z)} 
   
 imply that 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
 
  
    
      
        2 
        ϖ 
       
     
    {\displaystyle 2\varpi } 
   
 
  
    
      
        2 
        ϖ 
        i 
       
     
    {\displaystyle 2\varpi i} 
   
 
  
    
      
        sl 
       
     
    {\displaystyle \operatorname {sl} } 
   
 
  
    
      
        g 
       
     
    {\displaystyle g} 
   
 
  
    
      
        g 
        ( 
        z 
        ) 
        = 
        
          
            
              sl 
               
              z 
             
            
              f 
              ( 
              z 
              ) 
             
           
         
        , 
       
     
    {\displaystyle g(z)={\frac {\operatorname {sl} z}{f(z)}},} 
   
 when patched, is an elliptic function without poles. By Liouville's theorem , it is a constant. By using 
  
    
      
        sl 
         
        z 
        = 
        z 
        + 
        O 
         
        ( 
        
          z 
          
            5 
           
         
        ) 
       
     
    {\displaystyle \operatorname {sl} z=z+\operatorname {O} (z^{5})} 
   
 
  
    
      
        M 
        ( 
        z 
        ) 
        = 
        z 
        + 
        O 
         
        ( 
        
          z 
          
            5 
           
         
        ) 
       
     
    {\displaystyle M(z)=z+\operatorname {O} (z^{5})} 
   
 
  
    
      
        N 
        ( 
        z 
        ) 
        = 
        1 
        + 
        O 
         
        ( 
        
          z 
          
            4 
           
         
        ) 
       
     
    {\displaystyle N(z)=1+\operatorname {O} (z^{4})} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        ◼ 
       
     
    {\displaystyle \blacksquare } 
   
 
  
 
Gauss conjectured that 
  
    
      
        ln 
         
        N 
        ( 
        ϖ 
        ) 
        = 
        π 
        
          / 
         
        2 
       
     
    {\displaystyle \ln N(\varpi )=\pi /2} 
   
 [ 57] 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
The 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
  The 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
  
  
    
      
        N 
        ( 
        z 
        ) 
        = 
        
          
            
              M 
              ( 
              ( 
              1 
              + 
              i 
              ) 
              z 
              ) 
             
            
              ( 
              1 
              + 
              i 
              ) 
              M 
              ( 
              z 
              ) 
             
           
         
        , 
        z 
        ∉ 
        ϖ 
        
          Z 
         
        [ 
        i 
        ] 
       
     
    {\displaystyle N(z)={\frac {M((1+i)z)}{(1+i)M(z)}},\quad z\notin \varpi \mathbb {Z} [i]} 
   
 and
  
    
      
        N 
        ( 
        2 
        z 
        ) 
        = 
        M 
        ( 
        z 
        
          ) 
          
            4 
           
         
        + 
        N 
        ( 
        z 
        
          ) 
          
            4 
           
         
        . 
       
     
    {\displaystyle N(2z)=M(z)^{4}+N(z)^{4}.} 
   
 Thanks to a certain theorem[ 58] 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 [ 59] [ 60] [ 61] [ 62] [ 63] 
  
    
      
        M 
        ( 
        z 
        ) 
        = 
        z 
        − 
        2 
        
          
            
              z 
              
                5 
               
             
            
              5 
              ! 
             
           
         
        − 
        36 
        
          
            
              z 
              
                9 
               
             
            
              9 
              ! 
             
           
         
        + 
        552 
        
          
            
              z 
              
                13 
               
             
            
              13 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle M(z)=z-2{\frac {z^{5}}{5!}}-36{\frac {z^{9}}{9!}}+552{\frac {z^{13}}{13!}}+\cdots ,\quad z\in \mathbb {C} } 
   
 
  
    
      
        N 
        ( 
        z 
        ) 
        = 
        1 
        + 
        2 
        
          
            
              z 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        − 
        4 
        
          
            
              z 
              
                8 
               
             
            
              8 
              ! 
             
           
         
        + 
        408 
        
          
            
              z 
              
                12 
               
             
            
              12 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        z 
        ∈ 
        
          C 
         
        . 
       
     
    {\displaystyle N(z)=1+2{\frac {z^{4}}{4!}}-4{\frac {z^{8}}{8!}}+408{\frac {z^{12}}{12!}}+\cdots ,\quad z\in \mathbb {C} .} 
   
 This can be contrasted with the power series of 
  
    
      
        sl 
       
     
    {\displaystyle \operatorname {sl} } 
   
 
We define 
  
    
      
        S 
       
     
    {\displaystyle S} 
   
 
  
    
      
        T 
       
     
    {\displaystyle T} 
   
 
  
    
      
        S 
        ( 
        z 
        ) 
        = 
        N 
        
          
            ( 
            
              
                z 
                
                  1 
                  + 
                  i 
                 
               
             
            ) 
           
          
            2 
           
         
        − 
        i 
        M 
        
          
            ( 
            
              
                z 
                
                  1 
                  + 
                  i 
                 
               
             
            ) 
           
          
            2 
           
         
        , 
        T 
        ( 
        z 
        ) 
        = 
        S 
        ( 
        i 
        z 
        ) 
        . 
       
     
    {\displaystyle S(z)=N\left({\frac {z}{1+i}}\right)^{2}-iM\left({\frac {z}{1+i}}\right)^{2},\quad T(z)=S(iz).} 
   
 Then the lemniscate cosine can be written as
  
    
      
        cl 
         
        z 
        = 
        
          
            
              S 
              ( 
              z 
              ) 
             
            
              T 
              ( 
              z 
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {cl} z={\frac {S(z)}{T(z)}}} 
   
 where[ 64] 
  
    
      
        S 
        ( 
        z 
        ) 
        = 
        1 
        − 
        
          
            
              z 
              
                2 
               
             
            
              2 
              ! 
             
           
         
        − 
        
          
            
              z 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        − 
        3 
        
          
            
              z 
              
                6 
               
             
            
              6 
              ! 
             
           
         
        + 
        17 
        
          
            
              z 
              
                8 
               
             
            
              8 
              ! 
             
           
         
        − 
        9 
        
          
            
              z 
              
                10 
               
             
            
              10 
              ! 
             
           
         
        + 
        111 
        
          
            
              z 
              
                12 
               
             
            
              12 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle S(z)=1-{\frac {z^{2}}{2!}}-{\frac {z^{4}}{4!}}-3{\frac {z^{6}}{6!}}+17{\frac {z^{8}}{8!}}-9{\frac {z^{10}}{10!}}+111{\frac {z^{12}}{12!}}+\cdots ,\quad z\in \mathbb {C} } 
   
 
  
    
      
        T 
        ( 
        z 
        ) 
        = 
        1 
        + 
        
          
            
              z 
              
                2 
               
             
            
              2 
              ! 
             
           
         
        − 
        
          
            
              z 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        + 
        3 
        
          
            
              z 
              
                6 
               
             
            
              6 
              ! 
             
           
         
        + 
        17 
        
          
            
              z 
              
                8 
               
             
            
              8 
              ! 
             
           
         
        + 
        9 
        
          
            
              z 
              
                10 
               
             
            
              10 
              ! 
             
           
         
        + 
        111 
        
          
            
              z 
              
                12 
               
             
            
              12 
              ! 
             
           
         
        + 
        ⋯ 
        , 
        z 
        ∈ 
        
          C 
         
        . 
       
     
    {\displaystyle T(z)=1+{\frac {z^{2}}{2!}}-{\frac {z^{4}}{4!}}+3{\frac {z^{6}}{6!}}+17{\frac {z^{8}}{8!}}+9{\frac {z^{10}}{10!}}+111{\frac {z^{12}}{12!}}+\cdots ,\quad z\in \mathbb {C} .} 
   
 Furthermore, the identities
  
    
      
        M 
        ( 
        2 
        z 
        ) 
        = 
        2 
        M 
        ( 
        z 
        ) 
        N 
        ( 
        z 
        ) 
        S 
        ( 
        z 
        ) 
        T 
        ( 
        z 
        ) 
        , 
       
     
    {\displaystyle M(2z)=2M(z)N(z)S(z)T(z),} 
   
 
  
    
      
        S 
        ( 
        2 
        z 
        ) 
        = 
        S 
        ( 
        z 
        
          ) 
          
            4 
           
         
        − 
        2 
        M 
        ( 
        z 
        
          ) 
          
            4 
           
         
        , 
       
     
    {\displaystyle S(2z)=S(z)^{4}-2M(z)^{4},} 
   
 
  
    
      
        T 
        ( 
        2 
        z 
        ) 
        = 
        T 
        ( 
        z 
        
          ) 
          
            4 
           
         
        − 
        2 
        M 
        ( 
        z 
        
          ) 
          
            4 
           
         
       
     
    {\displaystyle T(2z)=T(z)^{4}-2M(z)^{4}} 
   
 and the Pythagorean-like identities
  
    
      
        M 
        ( 
        z 
        
          ) 
          
            2 
           
         
        + 
        S 
        ( 
        z 
        
          ) 
          
            2 
           
         
        = 
        N 
        ( 
        z 
        
          ) 
          
            2 
           
         
        , 
       
     
    {\displaystyle M(z)^{2}+S(z)^{2}=N(z)^{2},} 
   
 
  
    
      
        M 
        ( 
        z 
        
          ) 
          
            2 
           
         
        + 
        N 
        ( 
        z 
        
          ) 
          
            2 
           
         
        = 
        T 
        ( 
        z 
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle M(z)^{2}+N(z)^{2}=T(z)^{2}} 
   
 hold for all 
  
    
      
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle z\in \mathbb {C} } 
   
 
The quasi-addition formulas
  
    
      
        M 
        ( 
        z 
        + 
        w 
        ) 
        M 
        ( 
        z 
        − 
        w 
        ) 
        = 
        M 
        ( 
        z 
        
          ) 
          
            2 
           
         
        N 
        ( 
        w 
        
          ) 
          
            2 
           
         
        − 
        N 
        ( 
        z 
        
          ) 
          
            2 
           
         
        M 
        ( 
        w 
        
          ) 
          
            2 
           
         
        , 
       
     
    {\displaystyle M(z+w)M(z-w)=M(z)^{2}N(w)^{2}-N(z)^{2}M(w)^{2},} 
   
 
  
    
      
        N 
        ( 
        z 
        + 
        w 
        ) 
        N 
        ( 
        z 
        − 
        w 
        ) 
        = 
        N 
        ( 
        z 
        
          ) 
          
            2 
           
         
        N 
        ( 
        w 
        
          ) 
          
            2 
           
         
        + 
        M 
        ( 
        z 
        
          ) 
          
            2 
           
         
        M 
        ( 
        w 
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle N(z+w)N(z-w)=N(z)^{2}N(w)^{2}+M(z)^{2}M(w)^{2}} 
   
 (where 
  
    
      
        z 
        , 
        w 
        ∈ 
        
          C 
         
       
     
    {\displaystyle z,w\in \mathbb {C} } 
   
 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 [ 65] 
Gauss' 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
  
    
      
        M 
        ( 
        z 
        ) 
        
          M 
          ″ 
         
        ( 
        z 
        ) 
        = 
        
          M 
          ′ 
         
        ( 
        z 
        
          ) 
          
            2 
           
         
        − 
        N 
        ( 
        z 
        
          ) 
          
            2 
           
         
        , 
       
     
    {\displaystyle M(z)M''(z)=M'(z)^{2}-N(z)^{2},} 
   
 
  
    
      
        N 
        ( 
        z 
        ) 
        
          N 
          ″ 
         
        ( 
        z 
        ) 
        = 
        
          N 
          ′ 
         
        ( 
        z 
        
          ) 
          
            2 
           
         
        + 
        M 
        ( 
        z 
        
          ) 
          
            2 
           
         
       
     
    {\displaystyle N(z)N''(z)=N'(z)^{2}+M(z)^{2}} 
   
 where 
  
    
      
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle z\in \mathbb {C} } 
   
 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 [ 66] 
  
    
      
        X 
        ( 
        z 
        ) 
        
          X 
          ⁗ 
         
        ( 
        z 
        ) 
        = 
        4 
        
          X 
          ′ 
         
        ( 
        z 
        ) 
        
          X 
          ‴ 
         
        ( 
        z 
        ) 
        − 
        3 
        
          X 
          ″ 
         
        ( 
        z 
        
          ) 
          
            2 
           
         
        + 
        2 
        X 
        ( 
        z 
        
          ) 
          
            2 
           
         
        , 
        z 
        ∈ 
        
          C 
         
        . 
       
     
    {\displaystyle X(z)X''''(z)=4X'(z)X'''(z)-3X''(z)^{2}+2X(z)^{2},\quad z\in \mathbb {C} .} 
   
 The functions can be also expressed by integrals involving elliptic functions:
  
    
      
        M 
        ( 
        z 
        ) 
        = 
        z 
        exp 
         
        
          ( 
          
            − 
            
              ∫ 
              
                0 
               
              
                z 
               
             
            
              ∫ 
              
                0 
               
              
                w 
               
             
            
              ( 
              
                
                  
                    1 
                    
                      
                        sl 
                        
                          2 
                         
                       
                       
                      v 
                     
                   
                 
                − 
                
                  
                    1 
                    
                      v 
                      
                        2 
                       
                     
                   
                 
               
              ) 
             
            
              d 
             
            v 
            
              d 
             
            w 
           
          ) 
         
        , 
       
     
    {\displaystyle M(z)=z\exp \left(-\int _{0}^{z}\int _{0}^{w}\left({\frac {1}{\operatorname {sl} ^{2}v}}-{\frac {1}{v^{2}}}\right)\,\mathrm {d} v\,\mathrm {d} w\right),} 
   
 
  
    
      
        N 
        ( 
        z 
        ) 
        = 
        exp 
         
        
          ( 
          
            
              ∫ 
              
                0 
               
              
                z 
               
             
            
              ∫ 
              
                0 
               
              
                w 
               
             
            
              sl 
              
                2 
               
             
             
            v 
            
              d 
             
            v 
            
              d 
             
            w 
           
          ) 
         
       
     
    {\displaystyle N(z)=\exp \left(\int _{0}^{z}\int _{0}^{w}\operatorname {sl} ^{2}v\,\mathrm {d} v\,\mathrm {d} w\right)} 
   
 where the contours do not cross the poles; while the innermost integrals are path-independent, the outermost ones are path-dependent; however, the path dependence cancels out with the non-injectivity of the complex exponential function .
An alternative way of expressing the lemniscate functions as a ratio of entire functions involves the theta functions (see Lemniscate elliptic functions § Methods of computation ); the relation between 
  
    
      
        M 
        , 
        N 
       
     
    {\displaystyle M,N} 
   
 
  
    
      
        
          θ 
          
            1 
           
         
        , 
        
          θ 
          
            3 
           
         
       
     
    {\displaystyle \theta _{1},\theta _{3}} 
   
 
  
    
      
        M 
        ( 
        z 
        ) 
        = 
        
          2 
          
            − 
            1 
            
              / 
             
            4 
           
         
        
          e 
          
            π 
            
              z 
              
                2 
               
             
            
              / 
             
            ( 
            2 
            
              ϖ 
              
                2 
               
             
            ) 
           
         
        
          
            
              π 
              ϖ 
             
           
         
        
          θ 
          
            1 
           
         
        
          ( 
          
            
              
                
                  π 
                  z 
                 
                ϖ 
               
             
            , 
            
              e 
              
                − 
                π 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle M(z)=2^{-1/4}e^{\pi z^{2}/(2\varpi ^{2})}{\sqrt {\frac {\pi }{\varpi }}}\theta _{1}\left({\frac {\pi z}{\varpi }},e^{-\pi }\right),} 
   
 
  
    
      
        N 
        ( 
        z 
        ) 
        = 
        
          2 
          
            − 
            1 
            
              / 
             
            4 
           
         
        
          e 
          
            π 
            
              z 
              
                2 
               
             
            
              / 
             
            ( 
            2 
            
              ϖ 
              
                2 
               
             
            ) 
           
         
        
          
            
              π 
              ϖ 
             
           
         
        
          θ 
          
            3 
           
         
        
          ( 
          
            
              
                
                  π 
                  z 
                 
                ϖ 
               
             
            , 
            
              e 
              
                − 
                π 
               
             
           
          ) 
         
       
     
    {\displaystyle N(z)=2^{-1/4}e^{\pi z^{2}/(2\varpi ^{2})}{\sqrt {\frac {\pi }{\varpi }}}\theta _{3}\left({\frac {\pi z}{\varpi }},e^{-\pi }\right)} 
   
 where 
  
    
      
        z 
        ∈ 
        
          C 
         
       
     
    {\displaystyle z\in \mathbb {C} } 
   
 
Relation to other functions 
Relation to Weierstrass and Jacobi elliptic functions 
The lemniscate functions are closely related to the Weierstrass elliptic function  
  
    
      
        ℘ 
        ( 
        z 
        ; 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle \wp (z;1,0)} 
   
 
  
    
      
        
          g 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle g_{2}=1} 
   
   and 
  
    
      
        
          g 
          
            3 
           
         
        = 
        0 
       
     
    {\displaystyle g_{3}=0} 
   
  . This lattice has fundamental periods 
  
    
      
        
          ω 
          
            1 
           
         
        = 
        
          
            2 
           
         
        ϖ 
        , 
       
     
    {\displaystyle \omega _{1}={\sqrt {2}}\varpi ,} 
   
 
  
    
      
        
          ω 
          
            2 
           
         
        = 
        i 
        
          ω 
          
            1 
           
         
       
     
    {\displaystyle \omega _{2}=i\omega _{1}} 
   
 
  
    
      
        
          e 
          
            1 
           
         
        = 
        
          
            
              1 
              2 
             
           
         
        , 
          
        
          e 
          
            2 
           
         
        = 
        0 
        , 
          
        
          e 
          
            3 
           
         
        = 
        − 
        
          
            
              1 
              2 
             
           
         
        . 
       
     
    {\displaystyle e_{1}={\tfrac {1}{2}},\ e_{2}=0,\ e_{3}=-{\tfrac {1}{2}}.} 
   
 
The related case of a Weierstrass elliptic function with 
  
    
      
        
          g 
          
            2 
           
         
        = 
        a 
       
     
    {\displaystyle g_{2}=a} 
   
  , 
  
    
      
        
          g 
          
            3 
           
         
        = 
        0 
       
     
    {\displaystyle g_{3}=0} 
   
   may be handled by a scaling transformation. However, this may involve complex numbers. If it is desired to remain within real numbers, there are two cases to consider: 
  
    
      
        a 
        > 
        0 
       
     
    {\displaystyle a>0} 
   
   and 
  
    
      
        a 
        < 
        0 
       
     
    {\displaystyle a<0} 
   
  . The period parallelogram  is either a square  or a rhombus . The Weierstrass elliptic function 
  
    
      
        ℘ 
        ( 
        z 
        ; 
        − 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle \wp (z;-1,0)} 
   
 [ 67] 
The square of the lemniscate sine can be represented as
  
    
      
        
          sl 
          
            2 
           
         
         
        z 
        = 
        
          
            1 
            
              ℘ 
              ( 
              z 
              ; 
              4 
              , 
              0 
              ) 
             
           
         
        = 
        
          
            i 
            
              2 
              ℘ 
              ( 
              ( 
              1 
              − 
              i 
              ) 
              z 
              ; 
              − 
              1 
              , 
              0 
              ) 
             
           
         
        = 
        
          − 
          2 
          ℘ 
         
        
          
            ( 
            
              
                
                  2 
                 
               
              z 
              + 
              ( 
              i 
              − 
              1 
              ) 
              
                
                  ϖ 
                  
                    2 
                   
                 
               
              ; 
              1 
              , 
              0 
             
            ) 
           
         
       
     
    {\displaystyle \operatorname {sl} ^{2}z={\frac {1}{\wp (z;4,0)}}={\frac {i}{2\wp ((1-i)z;-1,0)}}={-2\wp }{\left({\sqrt {2}}z+(i-1){\frac {\varpi }{\sqrt {2}}};1,0\right)}} 
   
 where the second and third argument of 
  
    
      
        ℘ 
       
     
    {\displaystyle \wp } 
   
 
  
    
      
        
          g 
          
            2 
           
         
       
     
    {\displaystyle g_{2}} 
   
   and 
  
    
      
        
          g 
          
            3 
           
         
       
     
    {\displaystyle g_{3}} 
   
  . The lemniscate sine is a rational function  in the Weierstrass elliptic function and its derivative:[ 68] 
  
    
      
        sl 
         
        z 
        = 
        − 
        2 
        
          
            
              ℘ 
              ( 
              z 
              ; 
              − 
              1 
              , 
              0 
              ) 
             
            
              
                ℘ 
                ′ 
               
              ( 
              z 
              ; 
              − 
              1 
              , 
              0 
              ) 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {sl} z=-2{\frac {\wp (z;-1,0)}{\wp '(z;-1,0)}}.} 
   
 The lemniscate functions can also be written in terms of Jacobi elliptic functions . The Jacobi elliptic functions 
  
    
      
        sn 
       
     
    {\displaystyle \operatorname {sn} } 
   
 
  
    
      
        cd 
       
     
    {\displaystyle \operatorname {cd} } 
   
 
  
    
      
        sn 
       
     
    {\displaystyle \operatorname {sn} } 
   
 
  
    
      
        cd 
       
     
    {\displaystyle \operatorname {cd} } 
   
 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
   (and 
  
    
      
        sd 
       
     
    {\displaystyle \operatorname {sd} } 
   
 
  
    
      
        cn 
       
     
    {\displaystyle \operatorname {cn} } 
   
 
  
    
      
        1 
        
          / 
         
        
          
            2 
           
         
       
     
    {\displaystyle 1/{\sqrt {2}}} 
   
 [ 69] [ 70] 
  
    
      
        sl 
         
        z 
        = 
        sn 
         
        ( 
        z 
        ; 
        i 
        ) 
        = 
        sc 
         
        ( 
        z 
        ; 
        
          
            2 
           
         
        ) 
        = 
        
          
            
              
                1 
                
                  2 
                 
               
             
           
          sd 
         
        
          ( 
          
            
              
                2 
               
             
            z 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {sl} z=\operatorname {sn} (z;i)=\operatorname {sc} (z;{\sqrt {2}})={{\tfrac {1}{\sqrt {2}}}\operatorname {sd} }\left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)} 
   
 
  
    
      
        cl 
         
        z 
        = 
        cd 
         
        ( 
        z 
        ; 
        i 
        ) 
        = 
        dn 
         
        ( 
        z 
        ; 
        
          
            2 
           
         
        ) 
        = 
        
          cn 
         
        
          ( 
          
            
              
                2 
               
             
            z 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {cl} z=\operatorname {cd} (z;i)=\operatorname {dn} (z;{\sqrt {2}})={\operatorname {cn} }\left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)} 
   
 where the second arguments denote the elliptic modulus 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
 
The functions 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}} 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}} 
   
 
  
    
      
        
          
            
              sl 
              ~ 
             
           
         
        z 
        = 
        cd 
         
        ( 
        z 
        ; 
        i 
        ) 
        sd 
         
        ( 
        z 
        ; 
        i 
        ) 
        = 
        dn 
         
        ( 
        z 
        ; 
        
          
            2 
           
         
        ) 
        sn 
         
        ( 
        z 
        ; 
        
          
            2 
           
         
        ) 
        = 
        
          
            
              1 
              
                2 
               
             
           
         
        cn 
         
        
          ( 
          
            
              
                2 
               
             
            z 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
        sn 
         
        
          ( 
          
            
              
                2 
               
             
            z 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle {\tilde {\operatorname {sl} }}\,z=\operatorname {cd} (z;i)\operatorname {sd} (z;i)=\operatorname {dn} (z;{\sqrt {2}})\operatorname {sn} (z;{\sqrt {2}})={\tfrac {1}{\sqrt {2}}}\operatorname {cn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)\operatorname {sn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right),} 
   
 
  
    
      
        
          
            
              cl 
              ~ 
             
           
         
        z 
        = 
        cd 
         
        ( 
        z 
        ; 
        i 
        ) 
        nd 
         
        ( 
        z 
        ; 
        i 
        ) 
        = 
        dn 
         
        ( 
        z 
        ; 
        
          
            2 
           
         
        ) 
        cn 
         
        ( 
        z 
        ; 
        
          
            2 
           
         
        ) 
        = 
        cn 
         
        
          ( 
          
            
              
                2 
               
             
            z 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
        dn 
         
        
          ( 
          
            
              
                2 
               
             
            z 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
        . 
       
     
    {\displaystyle {\tilde {\operatorname {cl} }}\,z=\operatorname {cd} (z;i)\operatorname {nd} (z;i)=\operatorname {dn} (z;{\sqrt {2}})\operatorname {cn} (z;{\sqrt {2}})=\operatorname {cn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)\operatorname {dn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right).} 
   
 
Relation to the modular lambda function 
The lemniscate sine can be used for the computation of values of the modular lambda function :
  
    
      
        
          ∏ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        
          sl 
         
        
          
            ( 
            
              
                
                  
                    2 
                    k 
                    − 
                    1 
                   
                  
                    2 
                    n 
                    + 
                    1 
                   
                 
               
              
                
                  ϖ 
                  2 
                 
               
             
            ) 
           
         
        = 
        
          
            
              
                λ 
                ( 
                ( 
                2 
                n 
                + 
                1 
                ) 
                i 
                ) 
               
              
                1 
                − 
                λ 
                ( 
                ( 
                2 
                n 
                + 
                1 
                ) 
                i 
                ) 
               
             
            
              8 
             
           
         
       
     
    {\displaystyle \prod _{k=1}^{n}\;{\operatorname {sl} }{\left({\frac {2k-1}{2n+1}}{\frac {\varpi }{2}}\right)}={\sqrt[{8}]{\frac {\lambda ((2n+1)i)}{1-\lambda ((2n+1)i)}}}} 
   
 For example:
  
    
      
        
          
            
              
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      14 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      3 
                      14 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      5 
                      14 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
               
             
            
              
                
                 
                = 
                
                  
                    
                      
                        λ 
                        ( 
                        7 
                        i 
                        ) 
                       
                      
                        1 
                        − 
                        λ 
                        ( 
                        7 
                        i 
                        ) 
                       
                     
                    
                      8 
                     
                   
                 
                = 
                
                  tan 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      
                        1 
                        2 
                       
                     
                   
                  arccsc 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    8 
                    
                      
                        7 
                       
                     
                    + 
                    21 
                   
                 
                + 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    7 
                   
                 
                + 
                1 
                
                  
                    ) 
                   
                 
                
                  
                    ) 
                   
                 
               
             
            
              
                
                 
                = 
                
                  
                    2 
                    
                      2 
                      + 
                      
                        
                          7 
                         
                       
                      + 
                      
                        
                          21 
                          + 
                          8 
                          
                            
                              7 
                             
                           
                         
                       
                      + 
                      
                        
                          2 
                          
                            14 
                            + 
                            6 
                            
                              
                                7 
                               
                             
                            + 
                            
                              
                                455 
                                + 
                                172 
                                
                                  
                                    7 
                                   
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
            
              
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      18 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      3 
                      18 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      5 
                      18 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      7 
                      18 
                     
                   
                 
                ϖ 
                
                  
                    ) 
                   
                 
               
             
            
              
                
                 
                = 
                
                  
                    
                      
                        λ 
                        ( 
                        9 
                        i 
                        ) 
                       
                      
                        1 
                        − 
                        λ 
                        ( 
                        9 
                        i 
                        ) 
                       
                     
                    
                      8 
                     
                   
                 
                = 
                tan 
                 
                
                  ( 
                  
                    
                      
                        
                          
                            
                              | 
                             
                            
                              | 
                             
                           
                         
                       
                     
                   
                   
                
                  
                    π 
                    4 
                   
                 
                − 
                arctan 
                 
                
                  ( 
                  
                    
                      
                        
                          
                            
                              | 
                             
                            
                              | 
                             
                           
                         
                       
                     
                   
                   
                
                  
                    
                      2 
                      
                        
                          
                            2 
                            
                              
                                3 
                               
                             
                            − 
                            2 
                           
                          
                            3 
                           
                         
                       
                      − 
                      2 
                      
                        
                          
                            2 
                            − 
                            
                              
                                3 
                               
                             
                           
                          
                            3 
                           
                         
                       
                      + 
                      
                        
                          3 
                         
                       
                      − 
                      1 
                     
                    
                      12 
                      
                        4 
                       
                     
                   
                 
                
                  
                    
                      
                        
                          
                            
                              
                                | 
                               
                              
                                | 
                               
                             
                           
                         
                       
                     
                    ) 
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}&{\operatorname {sl} }{\bigl (}{\tfrac {1}{14}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {3}{14}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {5}{14}}\varpi {\bigr )}\\[7mu]&\quad {}={\sqrt[{8}]{\frac {\lambda (7i)}{1-\lambda (7i)}}}={\tan }{\Bigl (}{{\tfrac {1}{2}}\operatorname {arccsc} }{\Bigl (}{\tfrac {1}{2}}{\sqrt {8{\sqrt {7}}+21}}+{\tfrac {1}{2}}{\sqrt {7}}+1{\Bigr )}{\Bigr )}\\[7mu]&\quad {}={\frac {2}{2+{\sqrt {7}}+{\sqrt {21+8{\sqrt {7}}}}+{\sqrt {2{14+6{\sqrt {7}}+{\sqrt {455+172{\sqrt {7}}}}}}}}}\\[18mu]&{\operatorname {sl} }{\bigl (}{\tfrac {1}{18}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {3}{18}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {5}{18}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {7}{18}}\varpi {\bigr )}\\&\quad {}={\sqrt[{8}]{\frac {\lambda (9i)}{1-\lambda (9i)}}}=\tan \left({\vphantom {\frac {\Big |}{\Big |}}}\right.{\frac {\pi }{4}}-\arctan \left({\vphantom {\frac {\Big |}{\Big |}}}\right.{\frac {2{\sqrt[{3}]{2{\sqrt {3}}-2}}-2{\sqrt[{3}]{2-{\sqrt {3}}}}+{\sqrt {3}}-1}{\sqrt[{4}]{12}}}\left.\left.{\vphantom {\frac {\Big |}{\Big |}}}\right)\right)\end{aligned}}} 
   
 
Inverse functions 
The inverse function of the lemniscate sine is the lemniscate arcsine, defined as[ 71] 
  
    
      
        arcsl 
         
        x 
        = 
        
          ∫ 
          
            0 
           
          
            x 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \operatorname {arcsl} x=\int _{0}^{x}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}.} 
   
 It can also be represented by the hypergeometric function :
  
    
      
        arcsl 
         
        x 
        = 
        x 
        
          
           
          
            2 
           
         
        
          F 
          
            1 
           
         
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        , 
        
          
            
              1 
              4 
             
           
         
        ; 
        
          
            
              5 
              4 
             
           
         
        ; 
        
          x 
          
            4 
           
         
        
          
            ) 
           
         
       
     
    {\displaystyle \operatorname {arcsl} x=x\,{}_{2}F_{1}{\bigl (}{\tfrac {1}{2}},{\tfrac {1}{4}};{\tfrac {5}{4}};x^{4}{\bigr )}} 
   
 which can be easily seen by using the binomial series .
The inverse function of the lemniscate cosine is the lemniscate arccosine. This function is defined by following expression:
  
    
      
        arccl 
         
        x 
        = 
        
          ∫ 
          
            x 
           
          
            1 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              − 
              
                t 
                
                  4 
                 
               
             
           
         
        = 
        
          
            
              1 
              2 
             
           
         
        ϖ 
        − 
        arcsl 
         
        x 
       
     
    {\displaystyle \operatorname {arccl} x=\int _{x}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}={\tfrac {1}{2}}\varpi -\operatorname {arcsl} x} 
   
 For 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   in the interval 
  
    
      
        − 
        1 
        ≤ 
        x 
        ≤ 
        1 
       
     
    {\displaystyle -1\leq x\leq 1} 
   
 
  
    
      
        sl 
         
        arcsl 
         
        x 
        = 
        x 
       
     
    {\displaystyle \operatorname {sl} \operatorname {arcsl} x=x} 
   
 
  
    
      
        cl 
         
        arccl 
         
        x 
        = 
        x 
       
     
    {\displaystyle \operatorname {cl} \operatorname {arccl} x=x} 
   
 
For the halving of the lemniscate arc length these formulas are valid:
  
    
      
        
          
            
              
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                arcsl 
                 
                x 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  sin 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                arcsin 
                 
                x 
                
                  
                    ) 
                   
                 
                
                  sech 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                arsinh 
                 
                x 
                
                  
                    ) 
                   
                 
               
             
            
              
                
                  sl 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                arcsl 
                 
                x 
                
                  
                    
                      ) 
                     
                   
                  
                    2 
                   
                 
               
              
                = 
                
                  tan 
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      4 
                     
                   
                 
                arcsin 
                 
                
                  x 
                  
                    2 
                   
                 
                
                  
                    ) 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\operatorname {arcsl} x{\bigr )}&={\sin }{\bigl (}{\tfrac {1}{2}}\arcsin x{\bigr )}\,{\operatorname {sech} }{\bigl (}{\tfrac {1}{2}}\operatorname {arsinh} x{\bigr )}\\{\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\operatorname {arcsl} x{\bigr )}^{2}&={\tan }{\bigl (}{\tfrac {1}{4}}\arcsin x^{2}{\bigr )}\end{aligned}}} 
   
 Furthermore there are the so called Hyperbolic lemniscate area functions:
  
    
      
        aslh 
         
        ( 
        x 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            x 
           
         
        
          
            1 
            
              
                y 
                
                  4 
                 
               
              + 
              1 
             
           
         
        
          d 
         
        y 
        = 
        
          
            
              1 
              2 
             
           
         
        F 
        
          ( 
          
            2 
            arctan 
             
            x 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {aslh} (x)=\int _{0}^{x}{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y={\tfrac {1}{2}}F\left(2\arctan x;{\tfrac {1}{\sqrt {2}}}\right)} 
   
 
  
    
      
        aclh 
         
        ( 
        x 
        ) 
        = 
        
          ∫ 
          
            x 
           
          
            ∞ 
           
         
        
          
            1 
            
              
                y 
                
                  4 
                 
               
              + 
              1 
             
           
         
        
          d 
         
        y 
        = 
        
          
            
              1 
              2 
             
           
         
        F 
        
          ( 
          
            2 
            arccot 
             
            x 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {aclh} (x)=\int _{x}^{\infty }{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y={\tfrac {1}{2}}F\left(2\operatorname {arccot} x;{\tfrac {1}{\sqrt {2}}}\right)} 
   
 
  
    
      
        aclh 
         
        ( 
        x 
        ) 
        = 
        
          
            ϖ 
            
              2 
             
           
         
        − 
        aslh 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle \operatorname {aclh} (x)={\frac {\varpi }{\sqrt {2}}}-\operatorname {aslh} (x)} 
   
 
  
    
      
        aslh 
         
        ( 
        x 
        ) 
        = 
        
          
            2 
           
         
        arcsl 
         
        
          ( 
          
            x 
            
              
                / 
               
             
            
              
                
                  1 
                  + 
                  
                    
                      
                        x 
                        
                          4 
                         
                       
                      + 
                      1 
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {aslh} (x)={\sqrt {2}}\operatorname {arcsl} \left(x{\Big /}{\sqrt {\textstyle 1+{\sqrt {x^{4}+1}}}}\right)} 
   
 
  
    
      
        arcsl 
         
        ( 
        x 
        ) 
        = 
        
          
            2 
           
         
        aslh 
         
        
          ( 
          
            x 
            
              
                / 
               
             
            
              
                
                  1 
                  + 
                  
                    
                      1 
                      − 
                      
                        x 
                        
                          4 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arcsl} (x)={\sqrt {2}}\operatorname {aslh} \left(x{\Big /}{\sqrt {\textstyle 1+{\sqrt {1-x^{4}}}}}\right)} 
   
 
Expression using elliptic integrals 
The lemniscate arcsine and the lemniscate arccosine can also be expressed by the Legendre-Form:
These functions can be displayed directly by using the incomplete elliptic integral  of the first kind:
  
    
      
        arcsl 
         
        x 
        = 
        
          
            1 
            
              2 
             
           
         
        F 
        
          ( 
          
            
              arcsin 
             
            
              
                
                  
                    
                      2 
                     
                   
                  x 
                 
                
                  1 
                  + 
                  
                    x 
                    
                      2 
                     
                   
                 
               
             
            ; 
            
              
                1 
                
                  2 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arcsl} x={\frac {1}{\sqrt {2}}}F\left({\arcsin }{\frac {{\sqrt {2}}x}{\sqrt {1+x^{2}}}};{\frac {1}{\sqrt {2}}}\right)} 
   
 
  
    
      
        arcsl 
         
        x 
        = 
        2 
        ( 
        
          
            2 
           
         
        − 
        1 
        ) 
        F 
        
          ( 
          
            
              arcsin 
             
            
              
                
                  ( 
                  
                    
                      2 
                     
                   
                  + 
                  1 
                  ) 
                  x 
                 
                
                  
                    
                      1 
                      + 
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                  + 
                  1 
                 
               
             
            ; 
            ( 
            
              
                2 
               
             
            − 
            1 
            
              ) 
              
                2 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arcsl} x=2({\sqrt {2}}-1)F\left({\arcsin }{\frac {({\sqrt {2}}+1)x}{{\sqrt {1+x^{2}}}+1}};({\sqrt {2}}-1)^{2}\right)} 
   
 The arc lengths of the lemniscate can also be expressed by only using the arc lengths of ellipses  (calculated by elliptic integrals of the second kind):
  
    
      
        
          
            
              
                arcsl 
                 
                x 
                = 
                
                 
               
              
                
                  
                    
                      2 
                      + 
                      
                        
                          2 
                         
                       
                     
                    2 
                   
                 
                E 
                
                  ( 
                  
                    
                      arcsin 
                     
                    
                      
                        
                          ( 
                          
                            
                              2 
                             
                           
                          + 
                          1 
                          ) 
                          x 
                         
                        
                          
                            
                              1 
                              + 
                              
                                x 
                                
                                  2 
                                 
                               
                             
                           
                          + 
                          1 
                         
                       
                     
                    ; 
                    ( 
                    
                      
                        2 
                       
                     
                    − 
                    1 
                    
                      ) 
                      
                        2 
                       
                     
                   
                  ) 
                 
               
             
            
              
                  
                  
                − 
                E 
                
                  ( 
                  
                    
                      arcsin 
                     
                    
                      
                        
                          
                            
                              2 
                             
                           
                          x 
                         
                        
                          1 
                          + 
                          
                            x 
                            
                              2 
                             
                           
                         
                       
                     
                    ; 
                    
                      
                        1 
                        
                          2 
                         
                       
                     
                   
                  ) 
                 
                + 
                
                  
                    
                      x 
                      
                        
                          1 
                          − 
                          
                            x 
                            
                              2 
                             
                           
                         
                       
                     
                    
                      
                        
                          2 
                         
                       
                      ( 
                      1 
                      + 
                      
                        x 
                        
                          2 
                         
                       
                      + 
                      
                        
                          1 
                          + 
                          
                            x 
                            
                              2 
                             
                           
                         
                       
                      ) 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {arcsl} x={}&{\frac {2+{\sqrt {2}}}{2}}E\left({\arcsin }{\frac {({\sqrt {2}}+1)x}{{\sqrt {1+x^{2}}}+1}};({\sqrt {2}}-1)^{2}\right)\\[5mu]&\ \ -E\left({\arcsin }{\frac {{\sqrt {2}}x}{\sqrt {1+x^{2}}}};{\frac {1}{\sqrt {2}}}\right)+{\frac {x{\sqrt {1-x^{2}}}}{{\sqrt {2}}(1+x^{2}+{\sqrt {1+x^{2}}})}}\end{aligned}}} 
   
 The lemniscate arccosine has this expression:
  
    
      
        arccl 
         
        x 
        = 
        
          
            1 
            
              2 
             
           
         
        F 
        
          ( 
          
            arccos 
             
            x 
            ; 
            
              
                1 
                
                  2 
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {arccl} x={\frac {1}{\sqrt {2}}}F\left(\arccos x;{\frac {1}{\sqrt {2}}}\right)} 
   
 
Use in integration 
The lemniscate arcsine can be used to integrate many functions. Here is a list of important integrals (the constants of integration  are omitted):
  
    
      
        ∫ 
        
          
            1 
            
              1 
              − 
              
                x 
                
                  4 
                 
               
             
           
         
        
          d 
         
        x 
        = 
        arcsl 
         
        x 
       
     
    {\displaystyle \int {\frac {1}{\sqrt {1-x^{4}}}}\,\mathrm {d} x=\operatorname {arcsl} x} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              ( 
              
                x 
                
                  2 
                 
               
              + 
              1 
              ) 
              ( 
              2 
              
                x 
                
                  2 
                 
               
              + 
              1 
              ) 
             
           
         
        
          d 
         
        x 
        = 
        
          arcsl 
         
        
          
            x 
            
              
                x 
                
                  2 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt {(x^{2}+1)(2x^{2}+1)}}}\,\mathrm {d} x={\operatorname {arcsl} }{\frac {x}{\sqrt {x^{2}+1}}}} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              
                x 
                
                  4 
                 
               
              + 
              6 
              
                x 
                
                  2 
                 
               
              + 
              1 
             
           
         
        
          d 
         
        x 
        = 
        
          arcsl 
         
        
          
            
              
                
                  2 
                 
               
              x 
             
            
              
                
                  
                    x 
                    
                      4 
                     
                   
                  + 
                  6 
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  1 
                 
               
              + 
              
                x 
                
                  2 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt {x^{4}+6x^{2}+1}}}\,\mathrm {d} x={\operatorname {arcsl} }{\frac {{\sqrt {2}}x}{\sqrt {{\sqrt {x^{4}+6x^{2}+1}}+x^{2}+1}}}} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              
                x 
                
                  4 
                 
               
              + 
              1 
             
           
         
        
          d 
         
        x 
        = 
        
          
            
              2 
             
           
          arcsl 
         
        
          
            x 
            
              
                
                  
                    x 
                    
                      4 
                     
                   
                  + 
                  1 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt {x^{4}+1}}}\,\mathrm {d} x={{\sqrt {2}}\operatorname {arcsl} }{\frac {x}{\sqrt {{\sqrt {x^{4}+1}}+1}}}} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              
                ( 
                1 
                − 
                
                  x 
                  
                    4 
                   
                 
                
                  ) 
                  
                    3 
                   
                 
               
              
                4 
               
             
           
         
        
          d 
         
        x 
        = 
        
          
            
              2 
             
           
          arcsl 
         
        
          
            x 
            
              1 
              + 
              
                
                  1 
                  − 
                  
                    x 
                    
                      4 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt[{4}]{(1-x^{4})^{3}}}}\,\mathrm {d} x={{\sqrt {2}}\operatorname {arcsl} }{\frac {x}{\sqrt {1+{\sqrt {1-x^{4}}}}}}} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              
                ( 
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
                
                  ) 
                  
                    3 
                   
                 
               
              
                4 
               
             
           
         
        
          d 
         
        x 
        = 
        
          arcsl 
         
        
          
            x 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt[{4}]{(x^{4}+1)^{3}}}}\,\mathrm {d} x={\operatorname {arcsl} }{\frac {x}{\sqrt[{4}]{x^{4}+1}}}} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              
                ( 
                1 
                − 
                
                  x 
                  
                    2 
                   
                 
                
                  ) 
                  
                    3 
                   
                 
               
              
                4 
               
             
           
         
        
          d 
         
        x 
        = 
        
          2 
          arcsl 
         
        
          
            x 
            
              1 
              + 
              
                
                  1 
                  − 
                  
                    x 
                    
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt[{4}]{(1-x^{2})^{3}}}}\,\mathrm {d} x={2\operatorname {arcsl} }{\frac {x}{1+{\sqrt {1-x^{2}}}}}} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              
                ( 
                
                  x 
                  
                    2 
                   
                 
                + 
                1 
                
                  ) 
                  
                    3 
                   
                 
               
              
                4 
               
             
           
         
        
          d 
         
        x 
        = 
        
          2 
          arcsl 
         
        
          
            x 
            
              
                
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  1 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt[{4}]{(x^{2}+1)^{3}}}}\,\mathrm {d} x={2\operatorname {arcsl} }{\frac {x}{{\sqrt {x^{2}+1}}+1}}} 
   
 
  
    
      
        ∫ 
        
          
            1 
            
              
                ( 
                a 
                
                  x 
                  
                    2 
                   
                 
                + 
                b 
                x 
                + 
                c 
                
                  ) 
                  
                    3 
                   
                 
               
              
                4 
               
             
           
         
        
          d 
         
        x 
        = 
        
          
            
              
                2 
                
                  
                    2 
                   
                 
               
              
                
                  4 
                  
                    a 
                    
                      2 
                     
                   
                  c 
                  − 
                  a 
                  
                    b 
                    
                      2 
                     
                   
                 
                
                  4 
                 
               
             
           
          arcsl 
         
        
          
            
              2 
              a 
              x 
              + 
              b 
             
            
              
                
                  4 
                  a 
                  ( 
                  a 
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  b 
                  x 
                  + 
                  c 
                  ) 
                 
               
              + 
              
                
                  4 
                  a 
                  c 
                  − 
                  
                    b 
                    
                      2 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \int {\frac {1}{\sqrt[{4}]{(ax^{2}+bx+c)^{3}}}}\,\mathrm {d} x={{\frac {2{\sqrt {2}}}{\sqrt[{4}]{4a^{2}c-ab^{2}}}}\operatorname {arcsl} }{\frac {2ax+b}{{\sqrt {4a(ax^{2}+bx+c)}}+{\sqrt {4ac-b^{2}}}}}} 
   
 
  
    
      
        ∫ 
        
          
            sech 
             
            x 
           
         
        
          d 
         
        x 
        = 
        
          2 
          arcsl 
         
        tanh 
         
        
          
            
              1 
              2 
             
           
         
        x 
       
     
    {\displaystyle \int {\sqrt {\operatorname {sech} x}}\,\mathrm {d} x={2\operatorname {arcsl} }\tanh {\tfrac {1}{2}}x} 
   
 
  
    
      
        ∫ 
        
          
            sec 
             
            x 
           
         
        
          d 
         
        x 
        = 
        
          2 
          arcsl 
         
        tan 
         
        
          
            
              1 
              2 
             
           
         
        x 
       
     
    {\displaystyle \int {\sqrt {\sec x}}\,\mathrm {d} x={2\operatorname {arcsl} }\tan {\tfrac {1}{2}}x} 
   
 
Hyperbolic lemniscate functions 
The hyperbolic lemniscate sine (red) and hyperbolic lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric tangent (pale dashed red). The hyperbolic lemniscate sine in the complex plane. Dark areas represent zeros and bright areas represent poles. The complex argument is represented by varying hue. For convenience, let 
  
    
      
        σ 
        = 
        
          
            2 
           
         
        ϖ 
       
     
    {\displaystyle \sigma ={\sqrt {2}}\varpi } 
   
 
  
    
      
        σ 
       
     
    {\displaystyle \sigma } 
   
 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
 
  
    
      
        σ 
       
     
    {\displaystyle \sigma } 
   
 
  
    
      
        3.7081 
        … 
       
     
    {\displaystyle 3.7081\ldots } 
   
 [ 72] [ 73] 
The hyperbolic lemniscate sine (slh ) and cosine (clh ) can be defined as inverses of elliptic integrals as follows:
  
    
      
        z 
        
          
            = 
            ∗ 
           
         
        
          ∫ 
          
            0 
           
          
            slh 
             
            z 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              + 
              
                t 
                
                  4 
                 
               
             
           
         
        = 
        
          ∫ 
          
            clh 
             
            z 
           
          
            ∞ 
           
         
        
          
            
              
                d 
               
              t 
             
            
              1 
              + 
              
                t 
                
                  4 
                 
               
             
           
         
       
     
    {\displaystyle z\mathrel {\overset {*}{=}} \int _{0}^{\operatorname {slh} z}{\frac {\mathrm {d} t}{\sqrt {1+t^{4}}}}=\int _{\operatorname {clh} z}^{\infty }{\frac {\mathrm {d} t}{\sqrt {1+t^{4}}}}} 
   
 where in 
  
    
      
        ( 
        ∗ 
        ) 
       
     
    {\displaystyle (*)} 
   
 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 
  
    
      
        { 
        σ 
        
          / 
         
        2 
        , 
        σ 
        i 
        
          / 
         
        2 
        , 
        − 
        σ 
        
          / 
         
        2 
        , 
        − 
        σ 
        i 
        
          / 
         
        2 
        } 
       
     
    {\displaystyle \{\sigma /2,\sigma i/2,-\sigma /2,-\sigma i/2\}} 
   
 
The complete integral has the value:
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              
                d 
               
              t 
             
            
              
                t 
                
                  4 
                 
               
              + 
              1 
             
           
         
        = 
        
          
            
              1 
              4 
             
           
         
        
          B 
         
        
          
            ( 
           
         
        
          
            
              1 
              4 
             
           
         
        , 
        
          
            
              1 
              4 
             
           
         
        
          
            ) 
           
         
        = 
        
          
            σ 
            2 
           
         
        = 
        1.85407 
        46773 
        01371 
        … 
       
     
    {\displaystyle \int _{0}^{\infty }{\frac {\mathrm {d} t}{\sqrt {t^{4}+1}}}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{4}}{\bigr )}={\frac {\sigma }{2}}=1.85407\;46773\;01371\ldots } 
   
 Therefore, the two defined functions have following relation to each other:
  
    
      
        slh 
         
        z 
        = 
        
          clh 
         
        
          
            
              ( 
             
           
          
            
              σ 
              2 
             
           
          − 
          z 
          
            
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {slh} z={\operatorname {clh} }{{\Bigl (}{\frac {\sigma }{2}}-z{\Bigr )}}} 
   
 The product of hyperbolic lemniscate sine and hyperbolic lemniscate cosine is equal to one:
  
    
      
        slh 
         
        z 
        clh 
         
        z 
        = 
        1 
       
     
    {\displaystyle \operatorname {slh} z\,\operatorname {clh} z=1} 
   
 The functions 
  
    
      
        slh 
       
     
    {\displaystyle \operatorname {slh} } 
   
 
  
    
      
        clh 
       
     
    {\displaystyle \operatorname {clh} } 
   
 
  
    
      
        { 
        σ 
        , 
        σ 
        i 
        } 
       
     
    {\displaystyle \{\sigma ,\sigma i\}} 
   
 
The hyperbolic lemniscate functions can be expressed in terms of lemniscate sine and lemniscate cosine:
  
    
      
        slh 
         
        
          
            ( 
           
         
        
          
            2 
           
         
        z 
        
          
            ) 
           
         
        = 
        
          
            
              ( 
              1 
              + 
              
                cl 
                
                  2 
                 
               
               
              z 
              ) 
              sl 
               
              z 
             
            
              
                
                  2 
                 
               
              cl 
               
              z 
             
           
         
       
     
    {\displaystyle \operatorname {slh} {\bigl (}{\sqrt {2}}z{\bigr )}={\frac {(1+\operatorname {cl} ^{2}z)\operatorname {sl} z}{{\sqrt {2}}\operatorname {cl} z}}} 
   
 
  
    
      
        clh 
         
        
          
            ( 
           
         
        
          
            2 
           
         
        z 
        
          
            ) 
           
         
        = 
        
          
            
              ( 
              1 
              + 
              
                sl 
                
                  2 
                 
               
               
              z 
              ) 
              cl 
               
              z 
             
            
              
                
                  2 
                 
               
              sl 
               
              z 
             
           
         
       
     
    {\displaystyle \operatorname {clh} {\bigl (}{\sqrt {2}}z{\bigr )}={\frac {(1+\operatorname {sl} ^{2}z)\operatorname {cl} z}{{\sqrt {2}}\operatorname {sl} z}}} 
   
 But there is also a relation to the Jacobi elliptic functions  with the elliptic modulus one by square root of two:
  
    
      
        slh 
         
        z 
        = 
        
          
            
              sn 
               
              ( 
              z 
              ; 
              1 
              
                / 
               
              
                
                  2 
                 
               
              ) 
             
            
              cd 
               
              ( 
              z 
              ; 
              1 
              
                / 
               
              
                
                  2 
                 
               
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {slh} z={\frac {\operatorname {sn} (z;1/{\sqrt {2}})}{\operatorname {cd} (z;1/{\sqrt {2}})}}} 
   
 
  
    
      
        clh 
         
        z 
        = 
        
          
            
              cd 
               
              ( 
              z 
              ; 
              1 
              
                / 
               
              
                
                  2 
                 
               
              ) 
             
            
              sn 
               
              ( 
              z 
              ; 
              1 
              
                / 
               
              
                
                  2 
                 
               
              ) 
             
           
         
       
     
    {\displaystyle \operatorname {clh} z={\frac {\operatorname {cd} (z;1/{\sqrt {2}})}{\operatorname {sn} (z;1/{\sqrt {2}})}}} 
   
 The hyperbolic lemniscate sine has following imaginary relation to the lemniscate sine:
  
    
      
        slh 
         
        z 
        = 
        
          
            
              1 
              − 
              i 
             
            
              2 
             
           
         
        sl 
         
        
          ( 
          
            
              
                
                  1 
                  + 
                  i 
                 
                
                  2 
                 
               
             
            z 
           
          ) 
         
        = 
        
          
            
              sl 
               
              
                ( 
                
                  
                    
                      
                        − 
                        1 
                       
                      
                        4 
                       
                     
                   
                  z 
                 
                ) 
               
             
            
              
                − 
                1 
               
              
                4 
               
             
           
         
       
     
    {\displaystyle \operatorname {slh} z={\frac {1-i}{\sqrt {2}}}\operatorname {sl} \left({\frac {1+i}{\sqrt {2}}}z\right)={\frac {\operatorname {sl} \left({\sqrt[{4}]{-1}}z\right)}{\sqrt[{4}]{-1}}}} 
   
 This is analogous to the relationship between hyperbolic and trigonometric sine:
  
    
      
        sinh 
         
        z 
        = 
        − 
        i 
        sin 
         
        ( 
        i 
        z 
        ) 
        = 
        
          
            
              sin 
               
              
                ( 
                
                  
                    
                      
                        − 
                        1 
                       
                      
                        2 
                       
                     
                   
                  z 
                 
                ) 
               
             
            
              
                − 
                1 
               
              
                2 
               
             
           
         
       
     
    {\displaystyle \sinh z=-i\sin(iz)={\frac {\sin \left({\sqrt[{2}]{-1}}z\right)}{\sqrt[{2}]{-1}}}} 
   
 
Relation to quartic Fermat curve 
Hyperbolic Lemniscate Tangent and Cotangent 
This image shows the standardized superelliptic Fermat squircle curve of the fourth degree:
Superellipse with the relation 
  
    
      
        
          x 
          
            4 
           
         
        + 
        
          y 
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle x^{4}+y^{4}=1} 
   
  In a quartic Fermat curve  
  
    
      
        
          x 
          
            4 
           
         
        + 
        
          y 
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle x^{4}+y^{4}=1} 
   
 squircle ) the hyperbolic lemniscate sine and cosine are analogous to the tangent and cotangent functions in a unit circle 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
  , the hyperbolic lemniscate sine of twice the enclosed area between this line and the x-axis is the y-coordinate of the intersection of 
  
    
      
        L 
       
     
    {\displaystyle L} 
   
   with the line 
  
    
      
        x 
        = 
        1 
       
     
    {\displaystyle x=1} 
   
 [ 74] 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 
  
    
      
        
          x 
          
            4 
           
         
        + 
        
          y 
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle x^{4}+y^{4}=1} 
   
 
  
    
      
        σ 
       
     
    {\displaystyle \sigma } 
   
 
  
    
      
        M 
        ( 
        1 
        , 
        1 
        
          / 
         
        
          
            2 
           
         
        ) 
        = 
        
          
            π 
            σ 
           
         
       
     
    {\displaystyle M(1,1/{\sqrt {2}})={\frac {\pi }{\sigma }}} 
   
 where 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 arithmetic–geometric mean .
The hyperbolic lemniscate sine satisfies the argument addition identity:
  
    
      
        slh 
         
        ( 
        a 
        + 
        b 
        ) 
        = 
        
          
            
              slh 
               
              a 
              
                slh 
                ′ 
               
               
              b 
              + 
              slh 
               
              b 
              
                slh 
                ′ 
               
               
              a 
             
            
              1 
              − 
              
                slh 
                
                  2 
                 
               
               
              a 
              
                slh 
                
                  2 
                 
               
               
              b 
             
           
         
       
     
    {\displaystyle \operatorname {slh} (a+b)={\frac {\operatorname {slh} a\operatorname {slh} 'b+\operatorname {slh} b\operatorname {slh} 'a}{1-\operatorname {slh} ^{2}a\,\operatorname {slh} ^{2}b}}} 
   
 When 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
 antiderivative  of 
  
    
      
        slh 
       
     
    {\displaystyle \operatorname {slh} } 
   
 
  
    
      
        clh 
       
     
    {\displaystyle \operatorname {clh} } 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              u 
             
           
         
        slh 
         
        ( 
        u 
        ) 
        = 
        
          
            1 
            + 
            slh 
             
            ( 
            u 
            
              ) 
              
                4 
               
             
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {slh} (u)={\sqrt {1+\operatorname {slh} (u)^{4}}}} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              u 
             
           
         
        clh 
         
        ( 
        u 
        ) 
        = 
        − 
        
          
            1 
            + 
            clh 
             
            ( 
            u 
            
              ) 
              
                4 
               
             
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {clh} (u)=-{\sqrt {1+\operatorname {clh} (u)^{4}}}} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              u 
             
           
         
        
          
            1 
            2 
           
         
        arsinh 
         
        
          
            [ 
           
         
        slh 
         
        ( 
        u 
        
          ) 
          
            2 
           
         
        
          
            ] 
           
         
        = 
        slh 
         
        ( 
        u 
        ) 
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\,{\frac {1}{2}}\operatorname {arsinh} {\bigl [}\operatorname {slh} (u)^{2}{\bigr ]}=\operatorname {slh} (u)} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              u 
             
           
         
        − 
        
          
            1 
            2 
           
         
        arsinh 
         
        
          
            [ 
           
         
        clh 
         
        ( 
        u 
        
          ) 
          
            2 
           
         
        
          
            ] 
           
         
        = 
        clh 
         
        ( 
        u 
        ) 
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}-\,{\frac {1}{2}}\operatorname {arsinh} {\bigl [}\operatorname {clh} (u)^{2}{\bigr ]}=\operatorname {clh} (u)} 
   
 
  
There are also the Hyperbolic lemniscate tangent and the Hyperbolic lemniscate coangent als further functions:
The functions tlh and ctlh fulfill the identities described in the differential equation mentioned:
  
    
      
        
          tlh 
         
        ( 
        
          
            2 
           
         
        u 
        ) 
        = 
        
          sin 
          
            4 
           
         
         
        ( 
        
          
            2 
           
         
        u 
        ) 
        = 
        sl 
         
        ( 
        u 
        ) 
        
          
            
              
                
                  cl 
                  
                    2 
                   
                 
                 
                u 
                + 
                1 
               
              
                
                  sl 
                  
                    2 
                   
                 
                 
                u 
                + 
                
                  cl 
                  
                    2 
                   
                 
                 
                u 
               
             
           
         
       
     
    {\displaystyle {\text{tlh}}({\sqrt {2}}\,u)=\sin _{4}({\sqrt {2}}\,u)=\operatorname {sl} (u){\sqrt {\frac {\operatorname {cl} ^{2}u+1}{\operatorname {sl} ^{2}u+\operatorname {cl} ^{2}u}}}} 
   
 
  
    
      
        
          ctlh 
         
        ( 
        
          
            2 
           
         
        u 
        ) 
        = 
        
          cos 
          
            4 
           
         
         
        ( 
        
          
            2 
           
         
        u 
        ) 
        = 
        cl 
         
        ( 
        u 
        ) 
        
          
            
              
                
                  sl 
                  
                    2 
                   
                 
                 
                u 
                + 
                1 
               
              
                
                  sl 
                  
                    2 
                   
                 
                 
                u 
                + 
                
                  cl 
                  
                    2 
                   
                 
                 
                u 
               
             
           
         
       
     
    {\displaystyle {\text{ctlh}}({\sqrt {2}}\,u)=\cos _{4}({\sqrt {2}}\,u)=\operatorname {cl} (u){\sqrt {\frac {\operatorname {sl} ^{2}u+1}{\operatorname {sl} ^{2}u+\operatorname {cl} ^{2}u}}}} 
   
 The functional designation sl stands for the lemniscatic sine and the designation cl stands for the lemniscatic cosine.
In addition, those relations to the Jacobi elliptic functions  are valid:
  
    
      
        
          tlh 
         
        ( 
        u 
        ) 
        = 
        
          
            
              
                sn 
               
              ( 
              u 
              ; 
              
                
                  
                    1 
                    2 
                   
                 
               
              
                
                  2 
                 
               
              ) 
             
            
              
                
                  cd 
                 
                ( 
                u 
                ; 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    2 
                   
                 
                
                  ) 
                  
                    4 
                   
                 
                + 
                
                  sn 
                 
                ( 
                u 
                ; 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    2 
                   
                 
                
                  ) 
                  
                    4 
                   
                 
               
              
                4 
               
             
           
         
       
     
    {\displaystyle {\text{tlh}}(u)={\frac {{\text{sn}}(u;{\tfrac {1}{2}}{\sqrt {2}})}{\sqrt[{4}]{{\text{cd}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}+{\text{sn}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}}}}} 
   
 
  
    
      
        
          ctlh 
         
        ( 
        u 
        ) 
        = 
        
          
            
              
                cd 
               
              ( 
              u 
              ; 
              
                
                  
                    1 
                    2 
                   
                 
               
              
                
                  2 
                 
               
              ) 
             
            
              
                
                  cd 
                 
                ( 
                u 
                ; 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    2 
                   
                 
                
                  ) 
                  
                    4 
                   
                 
                + 
                
                  sn 
                 
                ( 
                u 
                ; 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    2 
                   
                 
                
                  ) 
                  
                    4 
                   
                 
               
              
                4 
               
             
           
         
       
     
    {\displaystyle {\text{ctlh}}(u)={\frac {{\text{cd}}(u;{\tfrac {1}{2}}{\sqrt {2}})}{\sqrt[{4}]{{\text{cd}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}+{\text{sn}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}}}}} 
   
 When 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
 quarter period  integral of 
  
    
      
        tlh 
       
     
    {\displaystyle \operatorname {tlh} } 
   
 
  
    
      
        ctlh 
       
     
    {\displaystyle \operatorname {ctlh} } 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              u 
             
           
         
        tlh 
         
        ( 
        u 
        ) 
        = 
        ctlh 
         
        ( 
        u 
        
          ) 
          
            3 
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {tlh} (u)=\operatorname {ctlh} (u)^{3}} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              u 
             
           
         
        ctlh 
         
        ( 
        u 
        ) 
        = 
        − 
        tlh 
         
        ( 
        u 
        
          ) 
          
            3 
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {ctlh} (u)=-\operatorname {tlh} (u)^{3}} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            ϖ 
            
              / 
             
            
              
                2 
               
             
           
         
        tlh 
         
        ( 
        u 
        ) 
        
          d 
         
        u 
        = 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle \int _{0}^{\varpi /{\sqrt {2}}}\operatorname {tlh} (u)\,\mathrm {d} u={\frac {\varpi }{2}}} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            ϖ 
            
              / 
             
            
              
                2 
               
             
           
         
        ctlh 
         
        ( 
        u 
        ) 
        
          d 
         
        u 
        = 
        
          
            ϖ 
            2 
           
         
       
     
    {\displaystyle \int _{0}^{\varpi /{\sqrt {2}}}\operatorname {ctlh} (u)\,\mathrm {d} u={\frac {\varpi }{2}}} 
   
 
  
Derivation of the Hyperbolic Lemniscate functions 
With respect to the quartic Fermat curve 
  
    
      
        
          x 
          
            4 
           
         
        + 
        
          y 
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle x^{4}+y^{4}=1} 
   
 
  
    
      
        slh 
       
     
    {\displaystyle \operatorname {slh} } 
   
 
  
    
      
        clh 
       
     
    {\displaystyle \operatorname {clh} } 
   
 
  
    
      
        
          sin 
          
            4 
           
         
       
     
    {\displaystyle \sin _{4}} 
   
 
  
    
      
        
          cos 
          
            4 
           
         
       
     
    {\displaystyle \cos _{4}} 
   
 [ 75]  The horizontal and vertical coordinates of this superellipse are dependent on twice the enclosed area w = 2A, so the following conditions must be met:
  
    
      
        x 
        ( 
        w 
        
          ) 
          
            4 
           
         
        + 
        y 
        ( 
        w 
        
          ) 
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle x(w)^{4}+y(w)^{4}=1} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              w 
             
           
         
        x 
        ( 
        w 
        ) 
        = 
        − 
        y 
        ( 
        w 
        
          ) 
          
            3 
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} w}}x(w)=-y(w)^{3}} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              w 
             
           
         
        y 
        ( 
        w 
        ) 
        = 
        x 
        ( 
        w 
        
          ) 
          
            3 
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} w}}y(w)=x(w)^{3}} 
   
 
  
    
      
        x 
        ( 
        w 
        = 
        0 
        ) 
        = 
        1 
       
     
    {\displaystyle x(w=0)=1} 
   
 
  
    
      
        y 
        ( 
        w 
        = 
        0 
        ) 
        = 
        0 
       
     
    {\displaystyle y(w=0)=0} 
   
 The solutions to this system of equations are as follows:
  
    
      
        x 
        ( 
        w 
        ) 
        = 
        cl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        ) 
        [ 
        sl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        
          ) 
          
            2 
           
         
        + 
        1 
        
          ] 
          
            1 
            
              / 
             
            2 
           
         
        [ 
        sl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        
          ) 
          
            2 
           
         
        + 
        cl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        
          ) 
          
            2 
           
         
        
          ] 
          
            − 
            1 
            
              / 
             
            2 
           
         
       
     
    {\displaystyle x(w)=\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}]^{-1/2}} 
   
 
  
    
      
        y 
        ( 
        w 
        ) 
        = 
        sl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        ) 
        [ 
        cl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        
          ) 
          
            2 
           
         
        + 
        1 
        
          ] 
          
            1 
            
              / 
             
            2 
           
         
        [ 
        sl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        
          ) 
          
            2 
           
         
        + 
        cl 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        w 
        
          ) 
          
            2 
           
         
        
          ] 
          
            − 
            1 
            
              / 
             
            2 
           
         
       
     
    {\displaystyle y(w)=\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}]^{-1/2}} 
   
 The following therefore applies to the quotient:
  
    
      
        
          
            
              y 
              ( 
              w 
              ) 
             
            
              x 
              ( 
              w 
              ) 
             
           
         
        = 
        
          
            
              sl 
               
              ( 
              
                
                  
                    1 
                    2 
                   
                 
               
              
                
                  2 
                 
               
              w 
              ) 
              [ 
              cl 
               
              ( 
              
                
                  
                    1 
                    2 
                   
                 
               
              
                
                  2 
                 
               
              w 
              
                ) 
                
                  2 
                 
               
              + 
              1 
              
                ] 
                
                  1 
                  
                    / 
                   
                  2 
                 
               
             
            
              cl 
               
              ( 
              
                
                  
                    1 
                    2 
                   
                 
               
              
                
                  2 
                 
               
              w 
              ) 
              [ 
              sl 
               
              ( 
              
                
                  
                    1 
                    2 
                   
                 
               
              
                
                  2 
                 
               
              w 
              
                ) 
                
                  2 
                 
               
              + 
              1 
              
                ] 
                
                  1 
                  
                    / 
                   
                  2 
                 
               
             
           
         
        = 
        slh 
         
        ( 
        w 
        ) 
       
     
    {\displaystyle {\frac {y(w)}{x(w)}}={\frac {\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}}{\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}}}=\operatorname {slh} (w)} 
   
 The functions x(w) and y(w) are called cotangent hyperbolic lemniscatus  and hyperbolic tangent .
  
    
      
        x 
        ( 
        w 
        ) 
        = 
        
          ctlh 
         
        ( 
        w 
        ) 
       
     
    {\displaystyle x(w)={\text{ctlh}}(w)} 
   
 
  
    
      
        y 
        ( 
        w 
        ) 
        = 
        
          tlh 
         
        ( 
        w 
        ) 
       
     
    {\displaystyle y(w)={\text{tlh}}(w)} 
   
 The sketch also shows the fact that the derivation of the Areasinus hyperbolic lemniscatus function is equal to the reciprocal of the square root of the successor of the fourth power  function.
First proof: comparison with the derivative of the arctangent 
There is a black diagonal on the sketch shown on the right. The length of the segment that runs perpendicularly from the intersection of this black diagonal with the red vertical axis to the point (1|0) should be called s. And the length of the section of the black diagonal from the coordinate origin point to the point of intersection of this diagonal with the cyan curved line of the superellipse has the following value depending on the slh value:
  
    
      
        D 
        ( 
        s 
        ) 
        = 
        
          
            
              
                ( 
               
             
            
              
                1 
                
                  
                    
                      s 
                      
                        4 
                       
                     
                    + 
                    1 
                   
                  
                    4 
                   
                 
               
             
            
              
                
                  ) 
                 
               
              
                2 
               
             
            + 
            
              
                ( 
               
             
            
              
                s 
                
                  
                    
                      s 
                      
                        4 
                       
                     
                    + 
                    1 
                   
                  
                    4 
                   
                 
               
             
            
              
                
                  ) 
                 
               
              
                2 
               
             
           
         
        = 
        
          
            
              
                s 
                
                  2 
                 
               
              + 
              1 
             
            
              
                
                  s 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
       
     
    {\displaystyle D(s)={\sqrt {{\biggl (}{\frac {1}{\sqrt[{4}]{s^{4}+1}}}{\biggr )}^{2}+{\biggl (}{\frac {s}{\sqrt[{4}]{s^{4}+1}}}{\biggr )}^{2}}}={\frac {\sqrt {s^{2}+1}}{\sqrt[{4}]{s^{4}+1}}}} 
   
 This connection is described by the Pythagorean theorem .
An analogous unit circle results in the arctangent of the circle trigonometric with the described area allocation.
The following derivation applies to this:
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              s 
             
           
         
        arctan 
         
        ( 
        s 
        ) 
        = 
        
          
            1 
            
              
                s 
                
                  2 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} s}}\arctan(s)={\frac {1}{s^{2}+1}}} 
   
 To determine the derivation of the areasinus lemniscatus hyperbolicus, the comparison of the infinitesimally small triangular areas for the same diagonal in the superellipse and the unit circle is set up below. Because the summation of the infinitesimally small triangular areas describes the area dimensions. In the case of the superellipse in the picture, half of the area concerned is shown in green. Because of the quadratic ratio of the areas to the lengths of triangles with the same infinitesimally small angle at the origin of the coordinates, the following formula applies:
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              s 
             
           
         
        
          aslh 
         
        ( 
        s 
        ) 
        = 
        
          
            [ 
           
         
        
          
            
              d 
             
            
              
                d 
               
              s 
             
           
         
        arctan 
         
        ( 
        s 
        ) 
        
          
            ] 
           
         
        D 
        ( 
        s 
        
          ) 
          
            2 
           
         
        = 
        
          
            1 
            
              
                s 
                
                  2 
                 
               
              + 
              1 
             
           
         
        D 
        ( 
        s 
        
          ) 
          
            2 
           
         
        = 
        
          
            1 
            
              
                s 
                
                  2 
                 
               
              + 
              1 
             
           
         
        
          
            ( 
           
         
        
          
            
              
                s 
                
                  2 
                 
               
              + 
              1 
             
            
              
                
                  s 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
        
          
            
              ) 
             
           
          
            2 
           
         
        = 
        
          
            1 
            
              
                s 
                
                  4 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} s}}{\text{aslh}}(s)={\biggl [}{\frac {\mathrm {d} }{\mathrm {d} s}}\arctan(s){\biggr ]}D(s)^{2}={\frac {1}{s^{2}+1}}D(s)^{2}={\frac {1}{s^{2}+1}}{\biggl (}{\frac {\sqrt {s^{2}+1}}{\sqrt[{4}]{s^{4}+1}}}{\biggr )}^{2}={\frac {1}{\sqrt {s^{4}+1}}}} 
   
 
In the picture shown, the area tangent lemniscatus hyperbolicus assigns the height of the intersection of the diagonal and the curved line to twice the green area. The green area itself is created as the difference integral of the superellipse function from zero to the relevant height value minus the area of the adjacent triangle:
  
    
      
        
          atlh 
         
        ( 
        v 
        ) 
        = 
        2 
        
          
            ( 
           
         
        
          ∫ 
          
            0 
           
          
            v 
           
         
        
          
            
              1 
              − 
              
                w 
                
                  4 
                 
               
             
            
              4 
             
           
         
        
          d 
         
        w 
        
          
            ) 
           
         
        − 
        v 
        
          
            
              1 
              − 
              
                v 
                
                  4 
                 
               
             
            
              4 
             
           
         
       
     
    {\displaystyle {\text{atlh}}(v)=2{\biggl (}\int _{0}^{v}{\sqrt[{4}]{1-w^{4}}}\mathrm {d} w{\biggr )}-v{\sqrt[{4}]{1-v^{4}}}} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              v 
             
           
         
        
          atlh 
         
        ( 
        v 
        ) 
        = 
        2 
        
          
            
              1 
              − 
              
                v 
                
                  4 
                 
               
             
            
              4 
             
           
         
        − 
        
          
            ( 
           
         
        
          
            
              d 
             
            
              
                d 
               
              v 
             
           
         
        v 
        
          
            
              1 
              − 
              
                v 
                
                  4 
                 
               
             
            
              4 
             
           
         
        
          
            ) 
           
         
        = 
        
          
            1 
            
              ( 
              1 
              − 
              
                v 
                
                  4 
                 
               
              
                ) 
                
                  3 
                  
                    / 
                   
                  4 
                 
               
             
           
         
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} v}}{\text{atlh}}(v)=2{\sqrt[{4}]{1-v^{4}}}-{\biggl (}{\frac {\mathrm {d} }{\mathrm {d} v}}v{\sqrt[{4}]{1-v^{4}}}{\biggr )}={\frac {1}{(1-v^{4})^{3/4}}}} 
   
 The following transformation applies:
  
    
      
        
          aslh 
         
        ( 
        x 
        ) 
        = 
        
          atlh 
         
        
          
            ( 
           
         
        
          
            x 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
        
          
            ) 
           
         
       
     
    {\displaystyle {\text{aslh}}(x)={\text{atlh}}{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}} 
   
 And so, according to the chain rule , this derivation holds:
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              x 
             
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        = 
        
          
            
              d 
             
            
              
                d 
               
              x 
             
           
         
        
          atlh 
         
        
          
            ( 
           
         
        
          
            x 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
        
          
            ) 
           
         
        = 
        
          
            ( 
           
         
        
          
            
              d 
             
            
              
                d 
               
              x 
             
           
         
        
          
            x 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
        
          
            ) 
           
         
        
          
            [ 
           
         
        1 
        − 
        
          
            ( 
           
         
        
          
            x 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
        
          
            
              ) 
             
           
          
            4 
           
         
        
          
            
              ] 
             
           
          
            − 
            3 
            
              / 
             
            4 
           
         
        = 
       
     
    {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\text{aslh}}(x)={\frac {\mathrm {d} }{\mathrm {d} x}}{\text{atlh}}{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}={\biggl (}{\frac {\mathrm {d} }{\mathrm {d} x}}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}{\biggl [}1-{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}^{4}{\biggr ]}^{-3/4}=} 
   
 
  
    
      
        = 
        
          
            1 
            
              ( 
              
                x 
                
                  4 
                 
               
              + 
              1 
              
                ) 
                
                  5 
                  
                    / 
                   
                  4 
                 
               
             
           
         
        
          
            [ 
           
         
        1 
        − 
        
          
            ( 
           
         
        
          
            x 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
        
          
            
              ) 
             
           
          
            4 
           
         
        
          
            
              ] 
             
           
          
            − 
            3 
            
              / 
             
            4 
           
         
        = 
        
          
            1 
            
              ( 
              
                x 
                
                  4 
                 
               
              + 
              1 
              
                ) 
                
                  5 
                  
                    / 
                   
                  4 
                 
               
             
           
         
        
          
            ( 
           
         
        
          
            1 
            
              
                x 
                
                  4 
                 
               
              + 
              1 
             
           
         
        
          
            
              ) 
             
           
          
            − 
            3 
            
              / 
             
            4 
           
         
        = 
        
          
            1 
            
              
                x 
                
                  4 
                 
               
              + 
              1 
             
           
         
       
     
    {\displaystyle ={\frac {1}{(x^{4}+1)^{5/4}}}{\biggl [}1-{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}^{4}{\biggr ]}^{-3/4}={\frac {1}{(x^{4}+1)^{5/4}}}{\biggl (}{\frac {1}{x^{4}+1}}{\biggr )}^{-3/4}={\frac {1}{\sqrt {x^{4}+1}}}} 
   
 
Specific values 
This list shows the values of the Hyperbolic Lemniscate Sine  accurately. Recall that,
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              d 
               
              t 
             
            
              
                t 
                
                  4 
                 
               
              + 
              1 
             
           
         
        = 
        
          
            
              1 
              4 
             
           
         
        
          B 
         
        
          
            ( 
           
         
        
          
            
              1 
              4 
             
           
         
        , 
        
          
            
              1 
              4 
             
           
         
        
          
            ) 
           
         
        = 
        
          
            ϖ 
            
              2 
             
           
         
        = 
        
          
            σ 
            2 
           
         
        = 
        1.85407 
        … 
       
     
    {\displaystyle \int _{0}^{\infty }{\frac {\operatorname {d} t}{\sqrt {t^{4}+1}}}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{4}}{\bigr )}={\frac {\varpi }{\sqrt {2}}}={\frac {\sigma }{2}}=1.85407\ldots } 
   
 whereas 
  
    
      
        
          
            
              1 
              2 
             
           
         
        
          B 
         
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        , 
        
          
            
              1 
              2 
             
           
         
        
          
            ) 
           
         
        = 
        
          
            
              π 
              2 
             
           
         
        , 
       
     
    {\displaystyle {\tfrac {1}{2}}\mathrm {B} {\bigl (}{\tfrac {1}{2}},{\tfrac {1}{2}}{\bigr )}={\tfrac {\pi }{2}},} 
   
 
  
    
      
        
          slh 
         
        
          
            ( 
           
         
        
          
            
              ϖ 
              
                2 
                
                  
                    2 
                   
                 
               
             
           
         
        
          
            ) 
           
         
        = 
        
          slh 
         
        
          
            ( 
           
         
        
          
            
              σ 
              4 
             
           
         
        
          
            ) 
           
         
        = 
        1 
       
     
    {\displaystyle {\operatorname {slh} }{\bigl (}{\tfrac {\varpi }{2{\sqrt {2}}}}{\bigr )}={\operatorname {slh} }{\bigl (}{\tfrac {\sigma }{4}}{\bigr )}=1} 
   
 
  
    
      
        
          sin 
         
        
          
            ( 
           
         
        
          
            
              π 
              2 
             
           
         
        
          
            ) 
           
         
        = 
        1 
       
     
    {\displaystyle {\sin }{\bigl (}{\tfrac {\pi }{2}}{\bigr )}=1} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              ϖ 
              
                2 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        1 
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{2{\sqrt {2}}}}\right)=1} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              ϖ 
              
                3 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            
              3 
              
                4 
               
             
           
         
        
          
            
              2 
              
                
                  3 
                 
               
              − 
              3 
             
            
              4 
             
           
         
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{3{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{3}}}{\sqrt[{4}]{2{\sqrt {3}}-3}}} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              
                2 
                ϖ 
               
              
                3 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            
              2 
              
                
                  3 
                 
               
              + 
              3 
             
            
              4 
             
           
         
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {2\varpi }{3{\sqrt {2}}}}\right)={\sqrt[{4}]{2{\sqrt {3}}+3}}} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              ϖ 
              
                4 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            
              2 
              
                4 
               
             
           
         
        ( 
        
          
            
              
                2 
               
             
            + 
            1 
           
         
        − 
        1 
        ) 
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{4{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{2}}}({\sqrt {{\sqrt {2}}+1}}-1)} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              
                3 
                ϖ 
               
              
                4 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            
              2 
              
                4 
               
             
           
         
        ( 
        
          
            
              
                2 
               
             
            + 
            1 
           
         
        + 
        1 
        ) 
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {3\varpi }{4{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{2}}}({\sqrt {{\sqrt {2}}+1}}+1)} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              ϖ 
              
                5 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            
              8 
              
                4 
               
             
           
         
        
          
            
              
                5 
               
             
            − 
            1 
           
         
        
          
            
              
                20 
                
                  4 
                 
               
             
            − 
            
              
                
                  
                    5 
                   
                 
                + 
                1 
               
             
           
         
        = 
        2 
        
          
            
              
                
                  5 
                 
               
              − 
              2 
             
            
              4 
             
           
         
        
          
            sin 
             
            ( 
            
              
                
                  1 
                  20 
                 
               
             
            π 
            ) 
            sin 
             
            ( 
            
              
                
                  3 
                  20 
                 
               
             
            π 
            ) 
           
         
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{8}}}{\sqrt {{\sqrt {5}}-1}}{\sqrt {{\sqrt[{4}]{20}}-{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}-2}}{\sqrt {\sin({\tfrac {1}{20}}\pi )\sin({\tfrac {3}{20}}\pi )}}} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              
                2 
                ϖ 
               
              
                5 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            
              2 
              
                
                  2 
                  
                    4 
                   
                 
               
             
           
         
        ( 
        
          
            5 
           
         
        + 
        1 
        ) 
        
          
            
              
                20 
                
                  4 
                 
               
             
            − 
            
              
                
                  
                    5 
                   
                 
                + 
                1 
               
             
           
         
        = 
        2 
        
          
            
              
                
                  5 
                 
               
              + 
              2 
             
            
              4 
             
           
         
        
          
            sin 
             
            ( 
            
              
                
                  1 
                  20 
                 
               
             
            π 
            ) 
            sin 
             
            ( 
            
              
                
                  3 
                  20 
                 
               
             
            π 
            ) 
           
         
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {2\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{2{\sqrt[{4}]{2}}}}({\sqrt {5}}+1){\sqrt {{\sqrt[{4}]{20}}-{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}+2}}{\sqrt {\sin({\tfrac {1}{20}}\pi )\sin({\tfrac {3}{20}}\pi )}}} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              
                3 
                ϖ 
               
              
                5 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            
              8 
              
                4 
               
             
           
         
        
          
            
              
                5 
               
             
            − 
            1 
           
         
        
          
            
              
                20 
                
                  4 
                 
               
             
            + 
            
              
                
                  
                    5 
                   
                 
                + 
                1 
               
             
           
         
        = 
        2 
        
          
            
              
                
                  5 
                 
               
              − 
              2 
             
            
              4 
             
           
         
        
          
            cos 
             
            ( 
            
              
                
                  1 
                  20 
                 
               
             
            π 
            ) 
            cos 
             
            ( 
            
              
                
                  3 
                  20 
                 
               
             
            π 
            ) 
           
         
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {3\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{8}}}{\sqrt {{\sqrt {5}}-1}}{\sqrt {{\sqrt[{4}]{20}}+{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}-2}}{\sqrt {\cos({\tfrac {1}{20}}\pi )\cos({\tfrac {3}{20}}\pi )}}} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              
                4 
                ϖ 
               
              
                5 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            
              2 
              
                
                  2 
                  
                    4 
                   
                 
               
             
           
         
        ( 
        
          
            5 
           
         
        + 
        1 
        ) 
        
          
            
              
                20 
                
                  4 
                 
               
             
            + 
            
              
                
                  
                    5 
                   
                 
                + 
                1 
               
             
           
         
        = 
        2 
        
          
            
              
                
                  5 
                 
               
              + 
              2 
             
            
              4 
             
           
         
        
          
            cos 
             
            ( 
            
              
                
                  1 
                  20 
                 
               
             
            π 
            ) 
            cos 
             
            ( 
            
              
                
                  3 
                  20 
                 
               
             
            π 
            ) 
           
         
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {4\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{2{\sqrt[{4}]{2}}}}({\sqrt {5}}+1){\sqrt {{\sqrt[{4}]{20}}+{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}+2}}{\sqrt {\cos({\tfrac {1}{20}}\pi )\cos({\tfrac {3}{20}}\pi )}}} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              ϖ 
              
                6 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            2 
           
         
        ( 
        
          
            2 
            
              
                3 
               
             
            + 
            3 
           
         
        + 
        1 
        ) 
        ( 
        1 
        − 
        
          
            
              2 
              
                
                  3 
                 
               
              − 
              3 
             
            
              4 
             
           
         
        ) 
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{6{\sqrt {2}}}}\right)={\frac {1}{2}}({\sqrt {2{\sqrt {3}}+3}}+1)(1-{\sqrt[{4}]{2{\sqrt {3}}-3}})} 
   
 
  
    
      
        slh 
        
          ( 
          
            
              
                5 
                ϖ 
               
              
                6 
                
                  
                    2 
                   
                 
               
             
           
          ) 
         
        = 
        
          
            1 
            2 
           
         
        ( 
        
          
            2 
            
              
                3 
               
             
            + 
            3 
           
         
        + 
        1 
        ) 
        ( 
        1 
        + 
        
          
            
              2 
              
                
                  3 
                 
               
              − 
              3 
             
            
              4 
             
           
         
        ) 
       
     
    {\displaystyle \operatorname {slh} \,\left({\frac {5\varpi }{6{\sqrt {2}}}}\right)={\frac {1}{2}}({\sqrt {2{\sqrt {3}}+3}}+1)(1+{\sqrt[{4}]{2{\sqrt {3}}-3}})} 
   
 That table shows the most important values of the Hyperbolic Lemniscate Tangent and Cotangent  functions:
  
    
      
        z 
       
     
    {\displaystyle z} 
   
 
  
    
      
        clh 
         
        z 
       
     
    {\displaystyle \operatorname {clh} z} 
   
 
  
    
      
        slh 
         
        z 
       
     
    {\displaystyle \operatorname {slh} z} 
   
 
  
    
      
        ctlh 
         
        z 
        = 
        
          cos 
          
            4 
           
         
         
        z 
       
     
    {\displaystyle \operatorname {ctlh} z=\cos _{4}z} 
   
 
  
    
      
        tlh 
         
        z 
        = 
        
          sin 
          
            4 
           
         
         
        z 
       
     
    {\displaystyle \operatorname {tlh} z=\sin _{4}z} 
   
  
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
 
  
    
      
        ∞ 
       
     
    {\displaystyle \infty } 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
  
  
    
      
        
          
            
              1 
              4 
             
           
         
        σ 
       
     
    {\displaystyle {\tfrac {1}{4}}\sigma } 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        1 
        
          
            / 
           
         
        
          
            2 
            
              4 
             
           
         
       
     
    {\displaystyle 1{\big /}{\sqrt[{4}]{2}}} 
   
 
  
    
      
        1 
        
          
            / 
           
         
        
          
            2 
            
              4 
             
           
         
       
     
    {\displaystyle 1{\big /}{\sqrt[{4}]{2}}} 
   
  
  
    
      
        
          
            
              1 
              2 
             
           
         
        σ 
       
     
    {\displaystyle {\tfrac {1}{2}}\sigma } 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
 
  
    
      
        ∞ 
       
     
    {\displaystyle \infty } 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
  
  
    
      
        
          
            
              3 
              4 
             
           
         
        σ 
       
     
    {\displaystyle {\tfrac {3}{4}}\sigma } 
   
 
  
    
      
        − 
        1 
       
     
    {\displaystyle -1} 
   
 
  
    
      
        − 
        1 
       
     
    {\displaystyle -1} 
   
 
  
    
      
        − 
        1 
        
          
            / 
           
         
        
          
            2 
            
              4 
             
           
         
       
     
    {\displaystyle -1{\big /}{\sqrt[{4}]{2}}} 
   
 
  
    
      
        1 
        
          
            / 
           
         
        
          
            2 
            
              4 
             
           
         
       
     
    {\displaystyle 1{\big /}{\sqrt[{4}]{2}}} 
   
  
  
    
      
        σ 
       
     
    {\displaystyle \sigma } 
   
 
  
    
      
        ∞ 
       
     
    {\displaystyle \infty } 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
 
  
    
      
        − 
        1 
       
     
    {\displaystyle -1} 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
  
Combination and halving theorems 
Given the hyperbolic lemniscate tangent  (
  
    
      
        tlh 
       
     
    {\displaystyle \operatorname {tlh} } 
   
 hyperbolic lemniscate cotangent  (
  
    
      
        ctlh 
       
     
    {\displaystyle \operatorname {ctlh} } 
   
 hyperbolic lemniscate area functions  from the section on inverse functions,
  
    
      
        aslh 
         
        ( 
        x 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            x 
           
         
        
          
            1 
            
              
                y 
                
                  4 
                 
               
              + 
              1 
             
           
         
        
          d 
         
        y 
       
     
    {\displaystyle \operatorname {aslh} (x)=\int _{0}^{x}{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y} 
   
 
  
    
      
        aclh 
         
        ( 
        x 
        ) 
        = 
        
          ∫ 
          
            x 
           
          
            ∞ 
           
         
        
          
            1 
            
              
                y 
                
                  4 
                 
               
              + 
              1 
             
           
         
        
          d 
         
        y 
       
     
    {\displaystyle \operatorname {aclh} (x)=\int _{x}^{\infty }{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y} 
   
 Then the following identities can be established,
  
    
      
        
          tlh 
         
        
          
            [ 
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        
          
            ] 
           
         
        = 
        
          ctlh 
         
        
          
            [ 
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            ] 
           
         
        = 
        
          
            x 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
       
     
    {\displaystyle {\text{tlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}={\text{ctlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}={\frac {x}{\sqrt[{4}]{x^{4}+1}}}} 
   
 
  
    
      
        
          ctlh 
         
        
          
            [ 
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        
          
            ] 
           
         
        = 
        
          tlh 
         
        
          
            [ 
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            ] 
           
         
        = 
        
          
            1 
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
              
                4 
               
             
           
         
       
     
    {\displaystyle {\text{ctlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}={\text{tlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}={\frac {1}{\sqrt[{4}]{x^{4}+1}}}} 
   
 hence the 4th power of 
  
    
      
        tlh 
       
     
    {\displaystyle \operatorname {tlh} } 
   
 
  
    
      
        ctlh 
       
     
    {\displaystyle \operatorname {ctlh} } 
   
 
  
    
      
        
          tlh 
         
        
          
            [ 
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        + 
        
          ctlh 
         
        
          
            [ 
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle {\text{tlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}^{4}+{\text{ctlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}^{4}=1} 
   
 
  
    
      
        
          tlh 
         
        
          
            [ 
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        + 
        
          ctlh 
         
        
          
            [ 
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle {\text{tlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}^{4}+{\text{ctlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}^{4}=1} 
   
 so a 4th power version of the Pythagorean theorem . The bisection theorem of the hyperbolic sinus lemniscatus reads as follows:
  
    
      
        
          slh 
         
        
          
            [ 
           
         
        
          
            
              1 
              2 
             
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        
          
            ] 
           
         
        = 
        
          
            
              
                
                  2 
                 
               
              x 
             
            
              
                
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  1 
                  + 
                  
                    
                      
                        x 
                        
                          4 
                         
                       
                      + 
                      1 
                     
                   
                 
               
              + 
              
                
                  
                    
                      
                        x 
                        
                          4 
                         
                       
                      + 
                      1 
                     
                   
                  − 
                  
                    x 
                    
                      2 
                     
                   
                  + 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle {\text{slh}}{\bigl [}{\tfrac {1}{2}}{\text{aslh}}(x){\bigr ]}={\frac {{\sqrt {2}}x}{{\sqrt {x^{2}+1+{\sqrt {x^{4}+1}}}}+{\sqrt {{\sqrt {x^{4}+1}}-x^{2}+1}}}}} 
   
 This formula can be revealed as a combination of the following two formulas:
  
    
      
        
          a 
          s 
          l 
          h 
         
        ( 
        x 
        ) 
        = 
        
          
            2 
           
         
        
          arcsl 
         
        
          
            [ 
           
         
        x 
        ( 
        
          
            
              x 
              
                4 
               
             
            + 
            1 
           
         
        + 
        1 
        
          ) 
          
            − 
            1 
            
              / 
             
            2 
           
         
        
          
            ] 
           
         
       
     
    {\displaystyle \mathrm {aslh} (x)={\sqrt {2}}\,{\text{arcsl}}{\bigl [}x({\sqrt {x^{4}+1}}+1)^{-1/2}{\bigr ]}} 
   
 
  
    
      
        
          arcsl 
         
        ( 
        x 
        ) 
        = 
        
          
            2 
           
         
        
          aslh 
         
        
          
            ( 
           
         
        
          
            
              
                
                  2 
                 
               
              x 
             
            
              
                
                  1 
                  + 
                  
                    x 
                    
                      2 
                     
                   
                 
               
              + 
              
                
                  1 
                  − 
                  
                    x 
                    
                      2 
                     
                   
                 
               
             
           
         
        
          
            ) 
           
         
       
     
    {\displaystyle {\text{arcsl}}(x)={\sqrt {2}}\,{\text{aslh}}{\bigl (}{\frac {{\sqrt {2}}x}{{\sqrt {1+x^{2}}}+{\sqrt {1-x^{2}}}}}{\bigr )}} 
   
 In addition, the following formulas are valid for all real values 
  
    
      
        x 
        ∈ 
        
          R 
         
       
     
    {\displaystyle x\in \mathbb {R} } 
   
 
  
    
      
        
          slh 
         
        
          
            [ 
           
         
        
          
            
              1 
              2 
             
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            ] 
           
         
        = 
        
          
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
             
            + 
            
              x 
              
                2 
               
             
            − 
            
              
                2 
               
             
            x 
            
              
                
                  
                    
                      x 
                      
                        4 
                       
                     
                    + 
                    1 
                   
                 
                + 
                
                  x 
                  
                    2 
                   
                 
               
             
           
         
        = 
        
          
            ( 
           
         
        
          
            
              x 
              
                4 
               
             
            + 
            1 
           
         
        − 
        
          x 
          
            2 
           
         
        + 
        1 
        
          
            
              ) 
             
           
          
            − 
            1 
            
              / 
             
            2 
           
         
        
          
            ( 
           
         
        
          
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
             
            + 
            1 
           
         
        − 
        x 
        
          
            ) 
           
         
       
     
    {\displaystyle {\text{slh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}={\sqrt {{\sqrt {x^{4}+1}}+x^{2}-{\sqrt {2}}x{\sqrt {{\sqrt {x^{4}+1}}+x^{2}}}}}={\bigl (}{\sqrt {x^{4}+1}}-x^{2}+1{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}-x{\bigr )}} 
   
 
  
    
      
        
          clh 
         
        
          
            [ 
           
         
        
          
            
              1 
              2 
             
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            ] 
           
         
        = 
        
          
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
             
            + 
            
              x 
              
                2 
               
             
            + 
            
              
                2 
               
             
            x 
            
              
                
                  
                    
                      x 
                      
                        4 
                       
                     
                    + 
                    1 
                   
                 
                + 
                
                  x 
                  
                    2 
                   
                 
               
             
           
         
        = 
        
          
            ( 
           
         
        
          
            
              x 
              
                4 
               
             
            + 
            1 
           
         
        − 
        
          x 
          
            2 
           
         
        + 
        1 
        
          
            
              ) 
             
           
          
            − 
            1 
            
              / 
             
            2 
           
         
        
          
            ( 
           
         
        
          
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
             
            + 
            1 
           
         
        + 
        x 
        
          
            ) 
           
         
       
     
    {\displaystyle {\text{clh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}={\sqrt {{\sqrt {x^{4}+1}}+x^{2}+{\sqrt {2}}x{\sqrt {{\sqrt {x^{4}+1}}+x^{2}}}}}={\bigl (}{\sqrt {x^{4}+1}}-x^{2}+1{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}+x{\bigr )}} 
   
 These identities follow from the last-mentioned formula:
  
    
      
        
          tlh 
         
        [ 
        
          
            
              1 
              2 
             
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          ] 
          
            2 
           
         
        = 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
            − 
            2 
            
              
                2 
               
             
            x 
            
              
                
                  
                    
                      x 
                      
                        4 
                       
                     
                    + 
                    1 
                   
                 
                − 
                
                  x 
                  
                    2 
                   
                 
               
             
           
         
        = 
        
          
            ( 
           
         
        2 
        
          x 
          
            2 
           
         
        + 
        2 
        + 
        2 
        
          
            
              x 
              
                4 
               
             
            + 
            1 
           
         
        
          
            
              ) 
             
           
          
            − 
            1 
            
              / 
             
            2 
           
         
        
          
            ( 
           
         
        
          
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
             
            + 
            1 
           
         
        − 
        x 
        
          
            ) 
           
         
       
     
    {\displaystyle {\text{tlh}}[{\tfrac {1}{2}}{\text{aclh}}(x)]^{2}={\tfrac {1}{2}}{\sqrt {2-2{\sqrt {2}}\,x{\sqrt {{\sqrt {x^{4}+1}}-x^{2}}}}}={\bigl (}2x^{2}+2+2{\sqrt {x^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}-x{\bigr )}} 
   
 
  
    
      
        
          ctlh 
         
        [ 
        
          
            
              1 
              2 
             
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          ] 
          
            2 
           
         
        = 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
            + 
            2 
            
              
                2 
               
             
            x 
            
              
                
                  
                    
                      x 
                      
                        4 
                       
                     
                    + 
                    1 
                   
                 
                − 
                
                  x 
                  
                    2 
                   
                 
               
             
           
         
        = 
        
          
            ( 
           
         
        2 
        
          x 
          
            2 
           
         
        + 
        2 
        + 
        2 
        
          
            
              x 
              
                4 
               
             
            + 
            1 
           
         
        
          
            
              ) 
             
           
          
            − 
            1 
            
              / 
             
            2 
           
         
        
          
            ( 
           
         
        
          
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
             
            + 
            1 
           
         
        + 
        x 
        
          
            ) 
           
         
       
     
    {\displaystyle {\text{ctlh}}[{\tfrac {1}{2}}{\text{aclh}}(x)]^{2}={\tfrac {1}{2}}{\sqrt {2+2{\sqrt {2}}\,x{\sqrt {{\sqrt {x^{4}+1}}-x^{2}}}}}={\bigl (}2x^{2}+2+2{\sqrt {x^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}+x{\bigr )}} 
   
 Hence, their 4th powers again equal one,
  
    
      
        
          tlh 
         
        
          
            [ 
           
         
        
          
            
              1 
              2 
             
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        + 
        
          ctlh 
         
        
          
            [ 
           
         
        
          
            
              1 
              2 
             
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        = 
        1 
       
     
    {\displaystyle {\text{tlh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}^{4}+{\text{ctlh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}^{4}=1} 
   
 The following formulas for the lemniscatic sine and lemniscatic cosine are closely related:
  
    
      
        
          sl 
         
        [ 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        ] 
        = 
        
          cl 
         
        [ 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        ] 
        = 
        
          
            
              
                
                  x 
                  
                    4 
                   
                 
                + 
                1 
               
             
            − 
            
              x 
              
                2 
               
             
           
         
       
     
    {\displaystyle {\text{sl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aclh}}(x)]={\text{cl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aslh}}(x)]={\sqrt {{\sqrt {x^{4}+1}}-x^{2}}}} 
   
 
  
    
      
        
          sl 
         
        [ 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        
          aslh 
         
        ( 
        x 
        ) 
        ] 
        = 
        
          cl 
         
        [ 
        
          
            
              1 
              2 
             
           
         
        
          
            2 
           
         
        
          aclh 
         
        ( 
        x 
        ) 
        ] 
        = 
        x 
        
          
            ( 
           
         
        
          
            
              x 
              
                4 
               
             
            + 
            1 
           
         
        + 
        1 
        
          
            
              ) 
             
           
          
            − 
            1 
            
              / 
             
            2 
           
         
       
     
    {\displaystyle {\text{sl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aslh}}(x)]={\text{cl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aclh}}(x)]=x{\bigl (}{\sqrt {x^{4}+1}}+1{\bigr )}^{-1/2}} 
   
 
Analogous to the determination of the improper integral in the Gaussian bell curve function , the coordinate transformation of a general cylinder  can be used to calculate the integral from 0 to the positive infinity in the function 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        exp 
         
        ( 
        − 
        
          x 
          
            4 
           
         
        ) 
       
     
    {\displaystyle f(x)=\exp(-x^{4})} 
   
 
This is the cylindrical coordinate transformation  in the Gaussian bell curve function:
  
    
      
        
          
            [ 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        exp 
         
        ( 
        − 
        
          x 
          
            2 
           
         
        ) 
        
          d 
         
        x 
        
          
            
              ] 
             
           
          
            2 
           
         
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        exp 
         
        ( 
        − 
        
          y 
          
            2 
           
         
        − 
        
          z 
          
            2 
           
         
        ) 
        
          d 
         
        y 
        
          d 
         
        z 
        = 
       
     
    {\displaystyle {\biggl [}\int _{0}^{\infty }\exp(-x^{2})\,\mathrm {d} x{\biggr ]}^{2}=\int _{0}^{\infty }\int _{0}^{\infty }\exp(-y^{2}-z^{2})\,\mathrm {d} y\,\mathrm {d} z=} 
   
 
  
    
      
        = 
        
          ∫ 
          
            0 
           
          
            π 
            
              / 
             
            2 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        det 
        
          
            [ 
            
              
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  r 
                  r 
                  cos 
                   
                  ( 
                  ϕ 
                  ) 
                 
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  ϕ 
                  r 
                  cos 
                   
                  ( 
                  ϕ 
                  ) 
                 
               
              
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  r 
                  r 
                  sin 
                   
                  ( 
                  ϕ 
                  ) 
                 
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  ϕ 
                  r 
                  sin 
                   
                  ( 
                  ϕ 
                  ) 
                 
               
             
            ] 
           
         
        exp 
         
        
          
            { 
           
         
        − 
        
          
            [ 
           
         
        r 
        cos 
         
        ( 
        ϕ 
        ) 
        
          
            
              ] 
             
           
          
            2 
           
         
        − 
        
          
            [ 
           
         
        r 
        sin 
         
        ( 
        ϕ 
        ) 
        
          
            
              ] 
             
           
          
            2 
           
         
        
          
            } 
           
         
        
          d 
         
        r 
        
          d 
         
        ϕ 
        = 
       
     
    {\displaystyle =\int _{0}^{\pi /2}\int _{0}^{\infty }\det {\begin{bmatrix}\partial /\partial r\,\,r\cos(\phi )&\partial /\partial \phi \,\,r\cos(\phi )\\\partial /\partial r\,\,r\sin(\phi )&\partial /\partial \phi \,\,r\sin(\phi )\end{bmatrix}}\exp {\bigl \{}-{\bigl [}r\cos(\phi ){\bigr ]}^{2}-{\bigl [}r\sin(\phi ){\bigr ]}^{2}{\bigr \}}\,\mathrm {d} r\,\mathrm {d} \phi =} 
   
 
  
    
      
        = 
        
          ∫ 
          
            0 
           
          
            π 
            
              / 
             
            2 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        r 
        exp 
         
        ( 
        − 
        
          r 
          
            2 
           
         
        ) 
        
          d 
         
        r 
        
          d 
         
        ϕ 
        = 
        
          ∫ 
          
            0 
           
          
            π 
            
              / 
             
            2 
           
         
        
          
            1 
            2 
           
         
        
          d 
         
        ϕ 
        = 
        
          
            π 
            4 
           
         
       
     
    {\displaystyle =\int _{0}^{\pi /2}\int _{0}^{\infty }r\exp(-r^{2})\,\mathrm {d} r\,\mathrm {d} \phi =\int _{0}^{\pi /2}{\frac {1}{2}}\,\mathrm {d} \phi ={\frac {\pi }{4}}} 
   
 And this is the analogous coordinate transformation for the lemniscatory case:
  
    
      
        
          
            [ 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        exp 
         
        ( 
        − 
        
          x 
          
            4 
           
         
        ) 
        
          d 
         
        x 
        
          
            
              ] 
             
           
          
            2 
           
         
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        exp 
         
        ( 
        − 
        
          y 
          
            4 
           
         
        − 
        
          z 
          
            4 
           
         
        ) 
        
          d 
         
        y 
        
          d 
         
        z 
        = 
       
     
    {\displaystyle {\biggl [}\int _{0}^{\infty }\exp(-x^{4})\,\mathrm {d} x{\biggr ]}^{2}=\int _{0}^{\infty }\int _{0}^{\infty }\exp(-y^{4}-z^{4})\,\mathrm {d} y\,\mathrm {d} z=} 
   
 
  
    
      
        = 
        
          ∫ 
          
            0 
           
          
            ϖ 
            
              / 
             
            
              
                2 
               
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        det 
        
          
            [ 
            
              
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  r 
                  r 
                  
                    ctlh 
                   
                  ( 
                  ϕ 
                  ) 
                 
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  ϕ 
                  r 
                  
                    ctlh 
                   
                  ( 
                  ϕ 
                  ) 
                 
               
              
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  r 
                  r 
                  
                    tlh 
                   
                  ( 
                  ϕ 
                  ) 
                 
                
                  ∂ 
                  
                    / 
                   
                  ∂ 
                  ϕ 
                  r 
                  
                    tlh 
                   
                  ( 
                  ϕ 
                  ) 
                 
               
             
            ] 
           
         
        exp 
         
        
          
            { 
           
         
        − 
        
          
            [ 
           
         
        r 
        
          ctlh 
         
        ( 
        ϕ 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        − 
        
          
            [ 
           
         
        r 
        
          tlh 
         
        ( 
        ϕ 
        ) 
        
          
            
              ] 
             
           
          
            4 
           
         
        
          
            } 
           
         
        
          d 
         
        r 
        
          d 
         
        ϕ 
        = 
       
     
    {\displaystyle =\int _{0}^{\varpi /{\sqrt {2}}}\int _{0}^{\infty }\det {\begin{bmatrix}\partial /\partial r\,\,r\,{\text{ctlh}}(\phi )&\partial /\partial \phi \,\,r\,{\text{ctlh}}(\phi )\\\partial /\partial r\,\,r\,{\text{tlh}}(\phi )&\partial /\partial \phi \,\,r\,{\text{tlh}}(\phi )\end{bmatrix}}\exp {\bigl \{}-{\bigl [}r\,{\text{ctlh}}(\phi ){\bigr ]}^{4}-{\bigl [}r\,{\text{tlh}}(\phi ){\bigr ]}^{4}{\bigr \}}\,\mathrm {d} r\,\mathrm {d} \phi =} 
   
 
  
    
      
        = 
        
          ∫ 
          
            0 
           
          
            ϖ 
            
              / 
             
            
              
                2 
               
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        r 
        exp 
         
        ( 
        − 
        
          r 
          
            4 
           
         
        ) 
        
          d 
         
        r 
        
          d 
         
        ϕ 
        = 
        
          ∫ 
          
            0 
           
          
            ϖ 
            
              / 
             
            
              
                2 
               
             
           
         
        
          
            
              π 
             
            4 
           
         
        
          d 
         
        ϕ 
        = 
        
          
            
              ϖ 
              
                
                  π 
                 
               
             
            
              4 
              
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle =\int _{0}^{\varpi /{\sqrt {2}}}\int _{0}^{\infty }r\exp(-r^{4})\,\mathrm {d} r\,\mathrm {d} \phi =\int _{0}^{\varpi /{\sqrt {2}}}{\frac {\sqrt {\pi }}{4}}\,\mathrm {d} \phi ={\frac {\varpi {\sqrt {\pi }}}{4{\sqrt {2}}}}} 
   
 In the last line of this elliptically analogous equation chain there is again the original Gauss bell curve integrated with the square function as the inner substitution according to the Chain rule  of infinitesimal analytics (analysis).
In both cases, the determinant of the Jacobi matrix  is multiplied to the original function in the integration domain.
The resulting new functions in the integration area are then integrated according to the new parameters.
Number theory 
In algebraic number theory , every finite abelian extension  of the Gaussian rationals  
  
    
      
        
          Q 
         
        ( 
        i 
        ) 
       
     
    {\displaystyle \mathbb {Q} (i)} 
   
 subfield  of 
  
    
      
        
          Q 
         
        ( 
        i 
        , 
        
          ω 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \mathbb {Q} (i,\omega _{n})} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 [ 23] [ 76] Kronecker–Weber theorem  for the rational numbers 
  
    
      
        
          Q 
         
       
     
    {\displaystyle \mathbb {Q} } 
   
 
  
    
      
        
          Q 
         
       
     
    {\displaystyle \mathbb {Q} } 
   
 
  
    
      
        
          Q 
         
        ( 
        
          ζ 
          
            n 
           
         
        ) 
       
     
    {\displaystyle \mathbb {Q} (\zeta _{n})} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 Hilbert's twelfth problem .
The field  
  
    
      
        
          Q 
         
        ( 
        i 
        , 
        sl 
         
        ( 
        ϖ 
        
          / 
         
        n 
        ) 
        ) 
       
     
    {\displaystyle \mathbb {Q} (i,\operatorname {sl} (\varpi /n))} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        
          Q 
         
        ( 
        i 
        ) 
       
     
    {\displaystyle \mathbb {Q} (i)} 
   
 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        y 
       
     
    {\displaystyle y} 
   
 
  
    
      
        ( 
        1 
        + 
        i 
        ) 
        n 
       
     
    {\displaystyle (1+i)n} 
   
 torsion points  on the elliptic curve  
  
    
      
        
          y 
          
            2 
           
         
        = 
        4 
        
          x 
          
            3 
           
         
        + 
        x 
       
     
    {\displaystyle y^{2}=4x^{3}+x} 
   
 [ 76] 
Hurwitz numbers 
The Bernoulli numbers  
  
    
      
        
          
            B 
           
          
            n 
           
         
       
     
    {\displaystyle \mathrm {B} _{n}} 
   
 
  
    
      
        
          
            B 
           
          
            n 
           
         
        = 
        
          lim 
          
            z 
            → 
            0 
           
         
        
          
            
              
                d 
               
              
                n 
               
             
            
              
                d 
               
              
                z 
                
                  n 
                 
               
             
           
         
        
          
            z 
            
              
                e 
                
                  z 
                 
               
              − 
              1 
             
           
         
        , 
        n 
        ≥ 
        0 
       
     
    {\displaystyle \mathrm {B} _{n}=\lim _{z\to 0}{\frac {\mathrm {d} ^{n}}{\mathrm {d} z^{n}}}{\frac {z}{e^{z}-1}},\quad n\geq 0} 
   
 and appear in
  
    
      
        
          ∑ 
          
            k 
            ∈ 
            
              Z 
             
            ∖ 
            { 
            0 
            } 
           
         
        
          
            1 
            
              k 
              
                2 
                n 
               
             
           
         
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
            − 
            1 
           
         
        
          
            B 
           
          
            2 
            n 
           
         
        
          
            
              ( 
              2 
              π 
              
                ) 
                
                  2 
                  n 
                 
               
             
            
              ( 
              2 
              n 
              ) 
              ! 
             
           
         
        = 
        2 
        ζ 
        ( 
        2 
        n 
        ) 
        , 
        n 
        ≥ 
        1 
       
     
    {\displaystyle \sum _{k\in \mathbb {Z} \setminus \{0\}}{\frac {1}{k^{2n}}}=(-1)^{n-1}\mathrm {B} _{2n}{\frac {(2\pi )^{2n}}{(2n)!}}=2\zeta (2n),\quad n\geq 1} 
   
 where 
  
    
      
        ζ 
       
     
    {\displaystyle \zeta } 
   
 Riemann zeta function .
The Hurwitz numbers  
  
    
      
        
          
            H 
           
          
            n 
           
         
        , 
       
     
    {\displaystyle \mathrm {H} _{n},} 
   
 Adolf Hurwitz , are the "lemniscate analogs" of the Bernoulli numbers. They can be defined by[ 77] [ 78] 
  
    
      
        
          
            H 
           
          
            n 
           
         
        = 
        − 
        
          lim 
          
            z 
            → 
            0 
           
         
        
          
            
              
                d 
               
              
                n 
               
             
            
              
                d 
               
              
                z 
                
                  n 
                 
               
             
           
         
        z 
        ζ 
        ( 
        z 
        ; 
        1 
        
          / 
         
        4 
        , 
        0 
        ) 
        , 
        n 
        ≥ 
        0 
       
     
    {\displaystyle \mathrm {H} _{n}=-\lim _{z\to 0}{\frac {\mathrm {d} ^{n}}{\mathrm {d} z^{n}}}z\zeta (z;1/4,0),\quad n\geq 0} 
   
 where 
  
    
      
        ζ 
        ( 
        ⋅ 
        ; 
        1 
        
          / 
         
        4 
        , 
        0 
        ) 
       
     
    {\displaystyle \zeta (\cdot ;1/4,0)} 
   
 Weierstrass zeta function  with lattice invariants 
  
    
      
        1 
        
          / 
         
        4 
       
     
    {\displaystyle 1/4} 
   
 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
 
  
    
      
        
          ∑ 
          
            z 
            ∈ 
            
              Z 
             
            [ 
            i 
            ] 
            ∖ 
            { 
            0 
            } 
           
         
        
          
            1 
            
              z 
              
                4 
                n 
               
             
           
         
        = 
        
          
            H 
           
          
            4 
            n 
           
         
        
          
            
              ( 
              2 
              ϖ 
              
                ) 
                
                  4 
                  n 
                 
               
             
            
              ( 
              4 
              n 
              ) 
              ! 
             
           
         
        = 
        
          G 
          
            4 
            n 
           
         
        ( 
        i 
        ) 
        , 
        n 
        ≥ 
        1 
       
     
    {\displaystyle \sum _{z\in \mathbb {Z} [i]\setminus \{0\}}{\frac {1}{z^{4n}}}=\mathrm {H} _{4n}{\frac {(2\varpi )^{4n}}{(4n)!}}=G_{4n}(i),\quad n\geq 1} 
   
 where 
  
    
      
        
          Z 
         
        [ 
        i 
        ] 
       
     
    {\displaystyle \mathbb {Z} [i]} 
   
 Gaussian integers  and 
  
    
      
        
          G 
          
            4 
            n 
           
         
       
     
    {\displaystyle G_{4n}} 
   
 Eisenstein series  of weight 
  
    
      
        4 
        n 
       
     
    {\displaystyle 4n} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      ∑ 
                      
                        n 
                        = 
                        1 
                       
                      
                        ∞ 
                       
                     
                    
                      
                        
                          
                            n 
                            
                              k 
                             
                           
                          
                            
                              e 
                              
                                2 
                                π 
                                n 
                               
                             
                            − 
                            1 
                           
                         
                       
                     
                    = 
                    
                      
                        { 
                        
                          
                            
                              
                                
                                  
                                    1 
                                    24 
                                   
                                 
                               
                              − 
                              
                                
                                  
                                    1 
                                    
                                      8 
                                      π 
                                     
                                   
                                 
                               
                             
                            
                              
                                if 
                               
                                
                              k 
                              = 
                              1 
                             
                           
                          
                            
                              
                                
                                  
                                    
                                      
                                        B 
                                       
                                      
                                        k 
                                        + 
                                        1 
                                       
                                     
                                    
                                      2 
                                      k 
                                      + 
                                      2 
                                     
                                   
                                 
                               
                             
                            
                              
                                if 
                               
                                
                              k 
                              ≡ 
                              1 
                              ( 
                              
                                m 
                                o 
                                d 
                               
                              4 
                              ) 
                                
                              
                                and 
                               
                                
                              k 
                              ≥ 
                              5 
                             
                           
                          
                            
                              
                                
                                  
                                    
                                      
                                        B 
                                       
                                      
                                        k 
                                        + 
                                        1 
                                       
                                     
                                    
                                      2 
                                      k 
                                      + 
                                      2 
                                     
                                   
                                 
                               
                              + 
                              
                                
                                  
                                    
                                      
                                        H 
                                       
                                      
                                        k 
                                        + 
                                        1 
                                       
                                     
                                    
                                      2 
                                      k 
                                      + 
                                      2 
                                     
                                   
                                 
                               
                              
                                
                                  ( 
                                  
                                    
                                      
                                        ϖ 
                                        π 
                                       
                                     
                                   
                                  ) 
                                 
                                
                                  k 
                                  + 
                                  1 
                                 
                               
                             
                            
                              
                                if 
                               
                                
                              k 
                              ≡ 
                              3 
                              ( 
                              
                                m 
                                o 
                                d 
                               
                              4 
                              ) 
                                
                              
                                and 
                               
                                
                              k 
                              ≥ 
                              3. 
                             
                           
                         
                         
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle \displaystyle {\begin{array}{ll}\displaystyle \sum _{n=1}^{\infty }{\dfrac {n^{k}}{e^{2\pi n}-1}}={\begin{cases}{\dfrac {1}{24}}-{\dfrac {1}{8\pi }}&{\text{if}}\ k=1\\{\dfrac {\mathrm {B} _{k+1}}{2k+2}}&{\text{if}}\ k\equiv 1\,(\mathrm {mod} \,4)\ {\text{and}}\ k\geq 5\\{\dfrac {\mathrm {B} _{k+1}}{2k+2}}+{\dfrac {\mathrm {H} _{k+1}}{2k+2}}\left({\dfrac {\varpi }{\pi }}\right)^{k+1}&{\text{if}}\ k\equiv 3\,(\mathrm {mod} \,4)\ {\text{and}}\ k\geq 3.\\\end{cases}}\end{array}}} 
   
 The Hurwitz numbers can also be determined as follows: 
  
    
      
        
          
            H 
           
          
            4 
           
         
        = 
        1 
        
          / 
         
        10 
       
     
    {\displaystyle \mathrm {H} _{4}=1/10} 
   
 
  
    
      
        
          
            H 
           
          
            4 
            n 
           
         
        = 
        
          
            3 
            
              ( 
              2 
              n 
              − 
              3 
              ) 
              ( 
              16 
              
                n 
                
                  2 
                 
               
              − 
              1 
              ) 
             
           
         
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
            − 
            1 
           
         
        
          
            
              ( 
             
            
              
                4 
                n 
               
              
                4 
                k 
               
             
            
              ) 
             
           
         
        ( 
        4 
        k 
        − 
        1 
        ) 
        ( 
        4 
        ( 
        n 
        − 
        k 
        ) 
        − 
        1 
        ) 
        
          
            H 
           
          
            4 
            k 
           
         
        
          
            H 
           
          
            4 
            ( 
            n 
            − 
            k 
            ) 
           
         
        , 
        n 
        ≥ 
        2 
       
     
    {\displaystyle \mathrm {H} _{4n}={\frac {3}{(2n-3)(16n^{2}-1)}}\sum _{k=1}^{n-1}{\binom {4n}{4k}}(4k-1)(4(n-k)-1)\mathrm {H} _{4k}\mathrm {H} _{4(n-k)},\quad n\geq 2} 
   
 and 
  
    
      
        
          
            H 
           
          
            n 
           
         
        = 
        0 
       
     
    {\displaystyle \mathrm {H} _{n}=0} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        4 
       
     
    {\displaystyle 4} 
   
 [ 79] [ 77] 
  
    
      
        
          
            H 
           
          
            8 
           
         
        = 
        
          
            3 
            10 
           
         
        , 
        
          
            H 
           
          
            12 
           
         
        = 
        
          
            567 
            130 
           
         
        , 
        
          
            H 
           
          
            16 
           
         
        = 
        
          
            
              43 
              659 
             
            170 
           
         
        , 
        … 
       
     
    {\displaystyle \mathrm {H} _{8}={\frac {3}{10}},\,\mathrm {H} _{12}={\frac {567}{130}},\,\mathrm {H} _{16}={\frac {43\,659}{170}},\,\ldots } 
   
 Also[ 80] 
  
    
      
        denom 
         
        
          
            H 
           
          
            4 
            n 
           
         
        = 
        
          ∏ 
          
            ( 
            p 
            − 
            1 
            ) 
            
              | 
             
            4 
            n 
           
         
        p 
       
     
    {\displaystyle \operatorname {denom} \mathrm {H} _{4n}=\prod _{(p-1)|4n}p} 
   
 where 
  
    
      
        p 
        ∈ 
        
          P 
         
       
     
    {\displaystyle p\in \mathbb {P} } 
   
 
  
    
      
        p 
        ≢ 
        3 
        ( 
        
          mod 
         
        4 
        ) 
        , 
       
     
    {\displaystyle p\not \equiv 3\,({\text{mod}}\,4),} 
   
 
  
    
      
        denom 
         
        
          
            B 
           
          
            2 
            n 
           
         
        = 
        
          ∏ 
          
            ( 
            p 
            − 
            1 
            ) 
            
              | 
             
            2 
            n 
           
         
        p 
       
     
    {\displaystyle \operatorname {denom} \mathrm {B} _{2n}=\prod _{(p-1)|2n}p} 
   
 where 
  
    
      
        p 
        ∈ 
        
          P 
         
       
     
    {\displaystyle p\in \mathbb {P} } 
   
 von Staudt–Clausen theorem ).
In fact, the von Staudt–Clausen theorem determines the fractional part  of the Bernoulli numbers:
  
    
      
        
          
            B 
           
          
            2 
            n 
           
         
        + 
        
          ∑ 
          
            ( 
            p 
            − 
            1 
            ) 
            
              | 
             
            2 
            n 
           
         
        
          
            1 
            p 
           
         
        ∈ 
        
          Z 
         
        , 
        n 
        ≥ 
        1 
       
     
    {\displaystyle \mathrm {B} _{2n}+\sum _{(p-1)|2n}{\frac {1}{p}}\in \mathbb {Z} ,\quad n\geq 1} 
   
 (sequence A000146 OEIS ) where 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        a 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle a\in \mathbb {Z} } 
   
 
  
    
      
        b 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle b\in \mathbb {Z} } 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        p 
        ≡ 
        1 
        ( 
        
          m 
          o 
          d 
         
        4 
        ) 
       
     
    {\displaystyle p\equiv 1\,(\mathrm {mod} \,4)} 
   
 
  
    
      
        p 
        = 
        
          a 
          
            2 
           
         
        + 
        
          b 
          
            2 
           
         
       
     
    {\displaystyle p=a^{2}+b^{2}} 
   
 Fermat's theorem on sums of two squares ) and 
  
    
      
        a 
        ≡ 
        b 
        + 
        1 
        ( 
        
          m 
          o 
          d 
         
        4 
        ) 
       
     
    {\displaystyle a\equiv b+1\,(\mathrm {mod} \,4)} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        2 
        a 
        = 
        ν 
        ( 
        p 
        ) 
       
     
    {\displaystyle 2a=\nu (p)} 
   
 
  
    
      
        ν 
        ( 
        p 
        ) 
        = 
        p 
        − 
        
          
            
              N 
             
           
          
            p 
           
         
       
     
    {\displaystyle \nu (p)=p-{\mathcal {N}}_{p}} 
   
 
  
    
      
        
          
            
              N 
             
           
          
            p 
           
         
       
     
    {\displaystyle {\mathcal {N}}_{p}} 
   
 
  
    
      
        
          X 
          
            3 
           
         
        − 
        X 
        ≡ 
        
          Y 
          
            2 
           
         
        ( 
        mod 
         
        p 
        ) 
       
     
    {\displaystyle X^{3}-X\equiv Y^{2}\,(\operatorname {mod} p)} 
   
 
  
    
      
        X 
        , 
        Y 
       
     
    {\displaystyle X,Y} 
   
 [ 81] [ 77] 
  
    
      
        
          
            H 
           
          
            4 
            n 
           
         
        − 
        
          
            1 
            2 
           
         
        − 
        
          ∑ 
          
            ( 
            p 
            − 
            1 
            ) 
            
              | 
             
            4 
            n 
           
         
        
          
            
              ν 
              ( 
              p 
              
                ) 
                
                  4 
                  n 
                  
                    / 
                   
                  ( 
                  p 
                  − 
                  1 
                  ) 
                 
               
             
            p 
           
         
        
          
            = 
            def 
           
         
        
          
            G 
           
          
            n 
           
         
        ∈ 
        
          Z 
         
        , 
        n 
        ≥ 
        1. 
       
     
    {\displaystyle \mathrm {H} _{4n}-{\frac {1}{2}}-\sum _{(p-1)|4n}{\frac {\nu (p)^{4n/(p-1)}}{p}}\mathrel {\overset {\text{def}}{=}} \mathrm {G} _{n}\in \mathbb {Z} ,\quad n\geq 1.} 
   
 The sequence of the integers 
  
    
      
        
          
            G 
           
          
            n 
           
         
       
     
    {\displaystyle \mathrm {G} _{n}} 
   
 
  
    
      
        0 
        , 
        − 
        1 
        , 
        5 
        , 
        253 
        , 
        … 
        . 
       
     
    {\displaystyle 0,-1,5,253,\ldots .} 
   
 [ 77] 
Let 
  
    
      
        n 
        ≥ 
        2 
       
     
    {\displaystyle n\geq 2} 
   
 
  
    
      
        4 
        n 
        + 
        1 
       
     
    {\displaystyle 4n+1} 
   
 
  
    
      
        
          
            G 
           
          
            n 
           
         
        ≡ 
        1 
        ( 
        
          m 
          o 
          d 
         
        4 
        ) 
       
     
    {\displaystyle \mathrm {G} _{n}\equiv 1\,(\mathrm {mod} \,4)} 
   
 
  
    
      
        4 
        n 
        + 
        1 
       
     
    {\displaystyle 4n+1} 
   
 
  
    
      
        
          
            G 
           
          
            n 
           
         
        ≡ 
        3 
        ( 
        
          m 
          o 
          d 
         
        4 
        ) 
       
     
    {\displaystyle \mathrm {G} _{n}\equiv 3\,(\mathrm {mod} \,4)} 
   
 [ 82] 
Some authors instead define the Hurwitz numbers as 
  
    
      
        
          
            H 
           
          
            n 
           
          ′ 
         
        = 
        
          
            H 
           
          
            4 
            n 
           
         
       
     
    {\displaystyle \mathrm {H} _{n}'=\mathrm {H} _{4n}} 
   
 
Appearances in Laurent series 
The Hurwitz numbers appear in several Laurent series  expansions related to the lemniscate functions:[ 83] 
  
    
      
        
          
            
              
                
                  sl 
                  
                    2 
                   
                 
                 
                z 
               
              
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        2 
                        
                          4 
                          n 
                         
                       
                      ( 
                      1 
                      − 
                      ( 
                      − 
                      1 
                      
                        ) 
                        
                          n 
                         
                       
                      
                        2 
                        
                          2 
                          n 
                         
                       
                      ) 
                      
                        
                          H 
                         
                        
                          4 
                          n 
                         
                       
                     
                    
                      4 
                      n 
                     
                   
                 
                
                  
                    
                      z 
                      
                        4 
                        n 
                        − 
                        2 
                       
                     
                    
                      ( 
                      4 
                      n 
                      − 
                      2 
                      ) 
                      ! 
                     
                   
                 
                , 
                
                  | 
                  z 
                  | 
                 
                < 
                
                  
                    ϖ 
                    
                      2 
                     
                   
                 
               
             
            
              
                
                  
                    
                      
                        sl 
                        ′ 
                       
                       
                      z 
                     
                    
                      sl 
                       
                      
                        z 
                       
                     
                   
                 
               
              
                = 
                
                  
                    1 
                    z 
                   
                 
                − 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        2 
                        
                          4 
                          n 
                         
                       
                      ( 
                      2 
                      − 
                      ( 
                      − 
                      1 
                      
                        ) 
                        
                          n 
                         
                       
                      
                        2 
                        
                          2 
                          n 
                         
                       
                      ) 
                      
                        
                          H 
                         
                        
                          4 
                          n 
                         
                       
                     
                    
                      4 
                      n 
                     
                   
                 
                
                  
                    
                      z 
                      
                        4 
                        n 
                        − 
                        1 
                       
                     
                    
                      ( 
                      4 
                      n 
                      − 
                      1 
                      ) 
                      ! 
                     
                   
                 
                , 
                
                  | 
                  z 
                  | 
                 
                < 
                
                  
                    ϖ 
                    
                      2 
                     
                   
                 
               
             
            
              
                
                  
                    1 
                    
                      sl 
                       
                      z 
                     
                   
                 
               
              
                = 
                
                  
                    1 
                    z 
                   
                 
                − 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        2 
                        
                          2 
                          n 
                         
                       
                      ( 
                      ( 
                      − 
                      1 
                      
                        ) 
                        
                          n 
                         
                       
                      2 
                      − 
                      
                        2 
                        
                          2 
                          n 
                         
                       
                      ) 
                      
                        
                          H 
                         
                        
                          4 
                          n 
                         
                       
                     
                    
                      4 
                      n 
                     
                   
                 
                
                  
                    
                      z 
                      
                        4 
                        n 
                        − 
                        1 
                       
                     
                    
                      ( 
                      4 
                      n 
                      − 
                      1 
                      ) 
                      ! 
                     
                   
                 
                , 
                
                  | 
                  z 
                  | 
                 
                < 
                ϖ 
               
             
            
              
                
                  
                    1 
                    
                      
                        sl 
                        
                          2 
                         
                       
                       
                      z 
                     
                   
                 
               
              
                = 
                
                  
                    1 
                    
                      z 
                      
                        2 
                       
                     
                   
                 
                + 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      
                        2 
                        
                          4 
                          n 
                         
                       
                      
                        
                          H 
                         
                        
                          4 
                          n 
                         
                       
                     
                    
                      4 
                      n 
                     
                   
                 
                
                  
                    
                      z 
                      
                        4 
                        n 
                        − 
                        2 
                       
                     
                    
                      ( 
                      4 
                      n 
                      − 
                      2 
                      ) 
                      ! 
                     
                   
                 
                , 
                
                  | 
                  z 
                  | 
                 
                < 
                ϖ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\operatorname {sl} ^{2}z&=\sum _{n=1}^{\infty }{\frac {2^{4n}(1-(-1)^{n}2^{2n})\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-2}}{(4n-2)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}\\{\frac {\operatorname {sl} 'z}{\operatorname {sl} {z}}}&={\frac {1}{z}}-\sum _{n=1}^{\infty }{\frac {2^{4n}(2-(-1)^{n}2^{2n})\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-1}}{(4n-1)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}\\{\frac {1}{\operatorname {sl} z}}&={\frac {1}{z}}-\sum _{n=1}^{\infty }{\frac {2^{2n}((-1)^{n}2-2^{2n})\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-1}}{(4n-1)!}},\quad \left|z\right|<\varpi \\{\frac {1}{\operatorname {sl} ^{2}z}}&={\frac {1}{z^{2}}}+\sum _{n=1}^{\infty }{\frac {2^{4n}\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-2}}{(4n-2)!}},\quad \left|z\right|<\varpi \end{aligned}}} 
   
 Analogously, in terms of the Bernoulli numbers:
  
    
      
        
          
            1 
            
              
                sinh 
                
                  2 
                 
               
               
              z 
             
           
         
        = 
        
          
            1 
            
              z 
              
                2 
               
             
           
         
        − 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              
                2 
                
                  2 
                  n 
                 
               
              
                
                  B 
                 
                
                  2 
                  n 
                 
               
             
            
              2 
              n 
             
           
         
        
          
            
              z 
              
                2 
                n 
                − 
                2 
               
             
            
              ( 
              2 
              n 
              − 
              2 
              ) 
              ! 
             
           
         
        , 
        
          | 
          z 
          | 
         
        < 
        π 
        . 
       
     
    {\displaystyle {\frac {1}{\sinh ^{2}z}}={\frac {1}{z^{2}}}-\sum _{n=1}^{\infty }{\frac {2^{2n}\mathrm {B} _{2n}}{2n}}{\frac {z^{2n-2}}{(2n-2)!}},\quad \left|z\right|<\pi .} 
   
 
A quartic analog of the Legendre symbol 
Let 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        p 
        ≡ 
        1 
        ( 
        
          mod 
         
        4 
        ) 
       
     
    {\displaystyle p\equiv 1\,({\text{mod}}\,4)} 
   
 quartic residue  (mod 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        
          
            ( 
            
              
                
                  a 
                  p 
                 
               
             
            ) 
           
          
            4 
           
         
       
     
    {\displaystyle \left({\tfrac {a}{p}}\right)_{4}} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        − 
        1 
       
     
    {\displaystyle -1} 
   
 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
If 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
 
  
    
      
        
          p 
          ′ 
         
        ∈ 
        
          Z 
         
        [ 
        i 
        ] 
       
     
    {\displaystyle p'\in \mathbb {Z} [i]} 
   
 [ 84] [ 85] 
  
    
      
        
          
            ( 
            
              
                a 
                p 
               
             
            ) 
           
          
            4 
           
         
        = 
        
          ∏ 
          
            
              p 
              ′ 
             
           
         
        
          
            
              sl 
               
              ( 
              2 
              ϖ 
              a 
              
                p 
                ′ 
               
              
                / 
               
              p 
              ) 
             
            
              sl 
               
              ( 
              2 
              ϖ 
              
                p 
                ′ 
               
              
                / 
               
              p 
              ) 
             
           
         
        . 
       
     
    {\displaystyle \left({\frac {a}{p}}\right)_{4}=\prod _{p'}{\frac {\operatorname {sl} (2\varpi ap'/p)}{\operatorname {sl} (2\varpi p'/p)}}.} 
   
 This theorem is analogous to
  
    
      
        
          ( 
          
            
              a 
              p 
             
           
          ) 
         
        = 
        
          ∏ 
          
            n 
            = 
            1 
           
          
            
              
                p 
                − 
                1 
               
              2 
             
           
         
        
          
            
              sin 
               
              ( 
              2 
              π 
              a 
              n 
              
                / 
               
              p 
              ) 
             
            
              sin 
               
              ( 
              2 
              π 
              n 
              
                / 
               
              p 
              ) 
             
           
         
       
     
    {\displaystyle \left({\frac {a}{p}}\right)=\prod _{n=1}^{\frac {p-1}{2}}{\frac {\sin(2\pi an/p)}{\sin(2\pi n/p)}}} 
   
 where 
  
    
      
        
          ( 
          
            
              
                ⋅ 
                ⋅ 
               
             
           
          ) 
         
       
     
    {\displaystyle \left({\tfrac {\cdot }{\cdot }}\right)} 
   
 Legendre symbol .
World map projections 
"The World on a Quincuncial Projection", from Peirce (1879) . The Peirce quincuncial projection , designed by Charles Sanders Peirce  of the US Coast Survey  in the 1870s, is a world map projection  based on the inverse lemniscate sine of stereographically projected  points (treated as complex numbers).[ 86] 
When lines of constant real or imaginary part are projected onto the complex plane via the hyperbolic lemniscate sine, and thence stereographically projected onto the sphere (see Riemann sphere ), the resulting curves are spherical conics , the spherical analog of planar ellipses  and hyperbolas .[ 87] Jacobi elliptic functions ) provide a parametrization for spherical conics.
A conformal map projection from the globe onto the 6 square faces of a cube  can also be defined using the lemniscate functions.[ 88] partial differential equations  can be effectively solved by conformal mapping, this map from sphere to cube is convenient for atmospheric modeling .[ 89] 
See also 
Notes 
^ Fagnano (1718–1723) ; Euler (1761) ; Gauss (1917) ^ Gauss (1917)  p. 199 used the symbols sl  and cl  for the lemniscate sine and cosine, respectively, and this notation is most common today: see e.g. Cox (1984)  p. 316, Eymard & Lafon (2004)  p. 204, and Lemmermeyer (2000)  p. 240. Ayoub (1984)  uses sinlem  and coslem . Whittaker & Watson (1920)  use the symbols sin lemn  and cos lemn . Some sources use the generic letters s c Prasolov & Solovyev (1997)  use the letter φ φ′ ^ The circle 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        x 
       
     
    {\displaystyle x^{2}+y^{2}=x} 
   
 
  
    
      
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        , 
        0 
        
          
            ) 
           
         
       
     
    {\textstyle {\bigl (}{\tfrac {1}{2}},0{\bigr )}} 
   
 
  
    
      
        r 
        = 
        cos 
         
        θ 
        , 
       
     
    {\displaystyle r=\cos \theta ,} 
   
 clover  under the definition from Cox & Shurman (2005) . This is not  the unit-radius  circle 
  
    
      
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\displaystyle x^{2}+y^{2}=1} 
   
 
  
    
      
        
          
            ( 
           
         
        
          x 
          
            2 
           
         
        + 
        
          y 
          
            2 
           
         
        
          
            ) 
           
         
        
          
           
          
            2 
           
         
        = 
        
          x 
          
            2 
           
         
        − 
        
          y 
          
            2 
           
         
       
     
    {\displaystyle {\bigl (}x^{2}+y^{2}{\bigr )}{}^{2}=x^{2}-y^{2}} 
   
  
^ The fundamental periods 
  
    
      
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1+i)\varpi } 
   
 
  
    
      
        ( 
        1 
        − 
        i 
        ) 
        ϖ 
       
     
    {\displaystyle (1-i)\varpi } 
   
  
^ Robinson (2019a)  starts from this definition and thence derives other properties of the lemniscate functions.^ This map was the first ever picture of a Schwarz–Christoffel mapping, in Schwarz (1869)  p. 113 . 
^ Schappacher (1997) . OEIS sequence A062539  lists the lemniscate constant's decimal digits.^ Levin (2006) ^ Todd (1975) ^ Cox (1984) ^ Dark areas represent zeros, and bright areas represent poles. As the argument  of 
  
    
      
        sl 
         
        z 
       
     
    {\displaystyle \operatorname {sl} z} 
   
 
  
    
      
        − 
        π 
       
     
    {\displaystyle -\pi } 
   
 
  
    
      
        − 
        π 
       
     
    {\displaystyle -\pi } 
   
 
  
    
      
        π 
       
     
    {\displaystyle \pi } 
   
 
  
    
      
        ( 
        Arg 
        ≈ 
        − 
        π 
        
          / 
         
        2 
        ) 
       
     
    {\displaystyle (\operatorname {Arg} \approx -\pi /2)} 
   
 
  
    
      
        ( 
        Arg 
        ≈ 
        0 
        ) 
       
     
    {\displaystyle (\operatorname {Arg} \approx 0)} 
   
 
  
    
      
        ( 
        Arg 
        ≈ 
        π 
        
          / 
         
        2 
        ) 
       
     
    {\displaystyle (\operatorname {Arg} \approx \pi /2)} 
   
 
  
    
      
        ( 
        Arg 
        ≈ 
        π 
        ) 
       
     
    {\displaystyle (\operatorname {Arg} \approx \pi )} 
   
  
^ Combining the first and fourth identity gives 
  
    
      
        sl 
         
        z 
        = 
        − 
        i 
        
          / 
         
        sl 
         
        ( 
        z 
        − 
        ( 
        1 
        + 
        i 
        ) 
        ϖ 
        
          / 
         
        2 
        ) 
       
     
    {\displaystyle \operatorname {sl} z=-i/\operatorname {sl} (z-(1+i)\varpi /2)} 
   
 Eymard & Lafon (2004)  p. 226, without the minus sign at the front of the right-hand side. 
^ The even Gaussian integers are the residue class of 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
  , modulo 
  
    
      
        1 
        + 
        i 
       
     
    {\displaystyle 1+i} 
   
  , the black squares on a checkerboard . 
^ Prasolov & Solovyev (1997) ; Robinson (2019a) ^ a b   Cox (2012) ^ Reinhardt & Walker (2010a)  §22.12.6 , §22.12.12 ^ Analogously, 
  
    
      
        
          
            1 
            
              sin 
               
              z 
             
           
         
        = 
        
          ∑ 
          
            n 
            ∈ 
            
              Z 
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              z 
              + 
              n 
              π 
             
           
         
        . 
       
     
    {\displaystyle {\frac {1}{\sin z}}=\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{z+n\pi }}.} 
   
  
^ Lindqvist & Peetre (2001)  generalizes the first of these forms.^ Ayoub (1984) ; Prasolov & Solovyev (1997) ^ Euler (1761)  §44 p. 79 , §47 pp. 80–81^ a b   Euler (1761)  §46 p. 80 ^ In fact, 
  
    
      
        
          i 
          
            ε 
           
         
        = 
        sl 
         
        
          
            
              
                β 
                ϖ 
               
              2 
             
           
         
       
     
    {\displaystyle i^{\varepsilon }=\operatorname {sl} {\tfrac {\beta \varpi }{2}}} 
   
  
^ a b c   Cox & Hyde (2014) ^ Gómez-Molleda & Lario (2019) ^ The fourth root with the least positive principal argument  is chosen. 
^ The restriction to positive and odd 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        deg 
         
        
          Λ 
          
            β 
           
         
        = 
        
          | 
          
            ( 
            
              
                O 
               
             
            
              / 
             
            β 
            
              
                O 
               
             
            
              ) 
              
                × 
               
             
           
          | 
         
       
     
    {\displaystyle \operatorname {deg} \Lambda _{\beta }=\left|({\mathcal {O}}/\beta {\mathcal {O}})^{\times }\right|} 
   
  
^ Cox (2013)  p. 142, Example 7.29(c)^ Rosen (1981) ^ Eymard & Lafon (2004)  p. 200^ And the area enclosed by 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
 whose enclosed area is a non-constructible number ). 
^ Euler (1761) ; Siegel (1969) . Prasolov & Solovyev (1997)  use the polar-coordinate representation of the Lemniscate to derive differential arc length, but the result is the same.^ Reinhardt & Walker (2010a)  §22.18.E6 ^ Siegel (1969) ; Schappacher (1997) ^ Such numbers are OEIS sequence A003401 . 
^ Abel (1827–1828) ; Rosen (1981) ; Prasolov & Solovyev (1997) ^ Euler (1786) ; Sridharan (2004) ; Levien (2008) ^ "A104203" . The On-Line Encyclopedia of Integer Sequences .^ Lomont, J.S.; Brillhart, John (2001). Elliptic Polynomials . CRC Press. pp. 12, 44. ISBN  1-58488-210-7 . ^ a b c d   "A193543 - Oeis" .^ Lomont, J.S.; Brillhart, John (2001). Elliptic Polynomials . CRC Press. ISBN  1-58488-210-7 . ^ Lomont, J.S.; Brillhart, John (2001). Elliptic Polynomials . CRC Press. ISBN  1-58488-210-7 . ^ a b   "A289695 - Oeis" .^ Wall, H. S. (1948). Analytic Theory of Continued Fractions . Chelsea Publishing Company. pp. 374– 375. ^ Reinhardt & Walker (2010a)  §22.20(ii) ^ Carlson (2010)  §19.8 ^ Reinhardt & Walker (2010a)  §22.12.12 ^ In general, 
  
    
      
        sinh 
         
        ( 
        x 
        − 
        n 
        π 
        ) 
       
     
    {\displaystyle \sinh(x-n\pi )} 
   
 
  
    
      
        sin 
         
        ( 
        x 
        − 
        n 
        π 
        i 
        ) 
        = 
        − 
        i 
        sinh 
         
        ( 
        i 
        x 
        + 
        n 
        π 
        ) 
       
     
    {\displaystyle \sin(x-n\pi i)=-i\sinh(ix+n\pi )} 
   
  
^ Reinhardt & Walker (2010a)  §22.11 ^ Reinhardt & Walker (2010a)  §22.2.E7 ^ Berndt (1994)  p. 247, 248, 253^ Reinhardt & Walker (2010a)  §22.11.E1 ^ Whittaker & Watson (1927) ^ Borwein & Borwein (1987) ^ a b   Eymard & Lafon (2004)  p. 227.^ Cartan, H. (1961). Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes  (in French). Hermann. pp. 160– 164. ^ More precisely, suppose 
  
    
      
        { 
        
          a 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{a_{n}\}} 
   
 
  
    
      
        S 
       
     
    {\displaystyle S} 
   
 
  
    
      
        ∑ 
        
          | 
          
            
              a 
              
                n 
               
             
            ( 
            z 
            ) 
           
          | 
         
       
     
    {\textstyle \sum \left|a_{n}(z)\right|} 
   
 
  
    
      
        S 
       
     
    {\displaystyle S} 
   
 
  
    
      
        { 
        
          n 
          
            1 
           
         
        , 
        
          n 
          
            2 
           
         
        , 
        
          n 
          
            3 
           
         
        , 
        … 
        } 
       
     
    {\displaystyle \{n_{1},n_{2},n_{3},\ldots \}} 
   
 permutation  of 
  
    
      
        { 
        1 
        , 
        2 
        , 
        3 
        , 
        … 
        } 
       
     
    {\displaystyle \{1,2,3,\ldots \}} 
   
 
  
    
      
        
          ∏ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        ( 
        1 
        + 
        
          a 
          
            n 
           
         
        ( 
        z 
        ) 
        ) 
        = 
        
          ∏ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        ( 
        1 
        + 
        
          a 
          
            
              n 
              
                k 
               
             
           
         
        ( 
        z 
        ) 
        ) 
       
     
    {\textstyle \prod _{n=1}^{\infty }(1+a_{n}(z))=\prod _{k=1}^{\infty }(1+a_{n_{k}}(z))} 
   
 
  
    
      
        z 
        ∈ 
        S 
       
     
    {\displaystyle z\in S} 
   
 bijection  between the natural numbers and 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
  
^ Bottazzini & Gray (2013)  p. 58^ More precisely, if for each 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
 
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          a 
          
            k 
           
         
        ( 
        n 
        ) 
       
     
    {\textstyle \lim _{n\to \infty }a_{k}(n)} 
   
 
  
    
      
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          M 
          
            k 
           
         
       
     
    {\textstyle \sum _{k=1}^{\infty }M_{k}} 
   
 
  
    
      
        
          | 
          
            
              a 
              
                k 
               
             
            ( 
            n 
            ) 
           
          | 
         
        ≤ 
        
          M 
          
            k 
           
         
       
     
    {\displaystyle \left|a_{k}(n)\right|\leq M_{k}} 
   
 
  
    
      
        n 
        ∈ 
        
          N 
         
       
     
    {\displaystyle n\in \mathbb {N} } 
   
 
  
    
      
        1 
        ≤ 
        k 
        ≤ 
        n 
       
     
    {\displaystyle 1\leq k\leq n} 
   
 
  
    
      
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        
          a 
          
            k 
           
         
        ( 
        n 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          lim 
          
            n 
            → 
            ∞ 
           
         
        
          a 
          
            k 
           
         
        ( 
        n 
        ) 
        . 
       
     
    {\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}a_{k}(n)=\sum _{k=1}^{\infty }\lim _{n\to \infty }a_{k}(n).} 
   
  ^ Alternatively, it can be inferred that these expansions exist just from the analyticity of 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
  
    
      
        
          ∑ 
          
            α 
           
         
        
          
            1 
            
              α 
              
                4 
               
             
           
         
        = 
        − 
        
          the coefficient of 
         
        
          z 
          
            5 
           
         
       
     
    {\textstyle \sum _{\alpha }{\frac {1}{\alpha ^{4}}}=-\,{\text{the coefficient of}}\,z^{5}} 
   
 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
  
^ Gauss, C. F. (1866). Werke (Band III)  
  
    
      
        
          φ 
          
            17 
           
         
       
     
    {\displaystyle \varphi ^{17}} 
   
 
  
    
      
        
          
            
              107 
              
                7 
                410 
                154 
                752 
                000 
               
             
           
         
       
     
    {\displaystyle {\tfrac {107}{7\,410\,154\,752\,000}}} 
   
 
  
    
      
        
          
            
              107 
              
                207 
                484 
                333 
                056 
                000 
               
             
           
         
       
     
    {\displaystyle {\tfrac {107}{207\,484\,333\,056\,000}}} 
   
 ^ If 
  
    
      
        M 
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          z 
          
            n 
            + 
            1 
           
         
       
     
    {\textstyle M(z)=\sum _{n=0}^{\infty }a_{n}z^{n+1}} 
   
 
  
    
      
        
          a 
          
            n 
           
         
       
     
    {\displaystyle a_{n}} 
   
 
  
    
      
        
          a 
          
            n 
            + 
            1 
           
         
        = 
        − 
        
          
            1 
            
              n 
              + 
              1 
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          2 
          
            n 
            − 
            k 
            + 
            1 
           
         
        
          a 
          
            k 
           
         
        
          
            
              
                H 
               
              
                n 
                − 
                k 
                + 
                1 
               
             
            
              ( 
              n 
              − 
              k 
              + 
              1 
              ) 
              ! 
             
           
         
       
     
    {\textstyle a_{n+1}=-{\frac {1}{n+1}}\sum _{k=0}^{n}2^{n-k+1}a_{k}{\frac {\mathrm {H} _{n-k+1}}{(n-k+1)!}}} 
   
 
  
    
      
        
          a 
          
            0 
           
         
        = 
        1 
       
     
    {\displaystyle a_{0}=1} 
   
 
  
    
      
        
          
            H 
           
          
            n 
           
         
       
     
    {\displaystyle \mathrm {H} _{n}} 
   
 Lemniscate elliptic functions § Hurwitz numbers . 
^ The power series expansions of 
  
    
      
        M 
       
     
    {\displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        
          
            L 
           
         
       
     
    {\displaystyle {\mathcal {L}}} 
   
 
  
    
      
        β 
        = 
        m 
        + 
        n 
        i 
       
     
    {\displaystyle \beta =m+ni} 
   
 
  
    
      
        m 
        , 
        n 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle m,n\in \mathbb {Z} } 
   
 
  
    
      
        m 
        + 
        n 
       
     
    {\displaystyle m+n} 
   
 
  
    
      
        3 
       
     
    {\displaystyle 3} 
   
 
  
    
      
        M 
        ( 
        3 
        z 
        ) 
        = 
        
          d 
          
            9 
           
         
        M 
        ( 
        z 
        
          ) 
          
            9 
           
         
        + 
        
          d 
          
            5 
           
         
        M 
        ( 
        z 
        
          ) 
          
            5 
           
         
        N 
        ( 
        z 
        
          ) 
          
            4 
           
         
        + 
        
          d 
          
            1 
           
         
        M 
        ( 
        z 
        ) 
        N 
        ( 
        z 
        
          ) 
          
            8 
           
         
       
     
    {\displaystyle M(3z)=d_{9}M(z)^{9}+d_{5}M(z)^{5}N(z)^{4}+d_{1}M(z)N(z)^{8}} 
   
 
  
    
      
        
          d 
          
            1 
           
         
        , 
        
          d 
          
            5 
           
         
        , 
        
          d 
          
            9 
           
         
       
     
    {\displaystyle d_{1},d_{5},d_{9}} 
   
 
  
    
      
        3 
        z 
        − 
        2 
        
          
            
              ( 
              3 
              z 
              
                ) 
                
                  5 
                 
               
             
            
              5 
              ! 
             
           
         
        − 
        36 
        
          
            
              ( 
              3 
              z 
              
                ) 
                
                  9 
                 
               
             
            
              9 
              ! 
             
           
         
        + 
        O 
         
        ( 
        
          z 
          
            13 
           
         
        ) 
        = 
        
          d 
          
            9 
           
         
        
          x 
          
            9 
           
         
        + 
        
          d 
          
            5 
           
         
        
          x 
          
            5 
           
         
        
          y 
          
            4 
           
         
        + 
        
          d 
          
            1 
           
         
        x 
        
          y 
          
            8 
           
         
        , 
       
     
    {\displaystyle 3z-2{\frac {(3z)^{5}}{5!}}-36{\frac {(3z)^{9}}{9!}}+\operatorname {O} (z^{13})=d_{9}x^{9}+d_{5}x^{5}y^{4}+d_{1}xy^{8},} 
   
 
  
    
      
        x 
        = 
        z 
        − 
        2 
        
          
            
              z 
              
                5 
               
             
            
              5 
              ! 
             
           
         
        − 
        36 
        
          
            
              z 
              
                9 
               
             
            
              9 
              ! 
             
           
         
        + 
        O 
         
        ( 
        
          z 
          
            13 
           
         
        ) 
        , 
        y 
        = 
        1 
        + 
        2 
        
          
            
              z 
              
                4 
               
             
            
              4 
              ! 
             
           
         
        − 
        4 
        
          
            
              z 
              
                8 
               
             
            
              8 
              ! 
             
           
         
        + 
        O 
         
        ( 
        
          z 
          
            12 
           
         
        ) 
        , 
       
     
    {\displaystyle x=z-2{\frac {z^{5}}{5!}}-36{\frac {z^{9}}{9!}}+\operatorname {O} (z^{13}),\quad y=1+2{\frac {z^{4}}{4!}}-4{\frac {z^{8}}{8!}}+\operatorname {O} (z^{12}),} 
   
 
  
    
      
        { 
        
          d 
          
            1 
           
         
        , 
        
          d 
          
            5 
           
         
        , 
        
          d 
          
            9 
           
         
        } 
        = 
        { 
        3 
        , 
        − 
        6 
        , 
        − 
        1 
        } 
        . 
       
     
    {\displaystyle \{d_{1},d_{5},d_{9}\}=\{3,-6,-1\}.} 
   
 
  
    
      
        3 
       
     
    {\displaystyle 3} 
   
 
  
    
      
        − 
        
          X 
          
            9 
           
         
        − 
        6 
        
          X 
          
            5 
           
         
        + 
        3 
        X 
       
     
    {\displaystyle -X^{9}-6X^{5}+3X} 
   
 
  
    
      
        sl 
         
        ( 
        2 
        ϖ 
        
          / 
         
        3 
        ) 
       
     
    {\displaystyle \operatorname {sl} (2\varpi /3)} 
   
 
  
    
      
        
          X 
          
            n 
           
         
        = 
        1 
       
     
    {\displaystyle X^{n}=1} 
   
 
  
    
      
        
          e 
          
            2 
            π 
            i 
            
              / 
             
            n 
           
         
       
     
    {\displaystyle e^{2\pi i/n}} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
  
^ By utilizing the power series expansion of the 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
 
  
    
      
        sl 
         
        ( 
        2 
        ϖ 
        
          / 
         
        β 
        ) 
       
     
    {\displaystyle \operatorname {sl} (2\varpi /\beta )} 
   
 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
 
  
    
      
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ( 
            β 
            
              
                β 
                ¯ 
               
             
            − 
            1 
            ) 
            
              / 
             
            4 
           
         
        
          a 
          
            4 
            n 
            + 
            1 
           
         
        ( 
        β 
        ) 
        
          X 
          
            β 
            
              
                β 
                ¯ 
               
             
            − 
            4 
            n 
           
         
       
     
    {\displaystyle \sum _{n=0}^{(\beta {\overline {\beta }}-1)/4}a_{4n+1}(\beta )X^{\beta {\overline {\beta }}-4n}} 
   
 
  
    
      
        
          
            
              
                
                  a 
                  
                    1 
                   
                 
                ( 
                β 
                ) 
               
              
                = 
                1 
                , 
               
             
            
              
                
                  a 
                  
                    5 
                   
                 
                ( 
                β 
                ) 
               
              
                = 
                
                  
                    
                      
                        β 
                        
                          4 
                         
                       
                      − 
                      β 
                      
                        
                          β 
                          ¯ 
                         
                       
                     
                    12 
                   
                 
                , 
               
             
            
              
                
                  a 
                  
                    9 
                   
                 
                ( 
                β 
                ) 
               
              
                = 
                
                  
                    
                      − 
                      
                        β 
                        
                          8 
                         
                       
                      − 
                      70 
                      
                        β 
                        
                          5 
                         
                       
                      
                        
                          β 
                          ¯ 
                         
                       
                      + 
                      336 
                      
                        β 
                        
                          4 
                         
                       
                      + 
                      35 
                      
                        β 
                        
                          2 
                         
                       
                      
                        
                          
                            β 
                            ¯ 
                           
                         
                        
                          2 
                         
                       
                      − 
                      300 
                      β 
                      
                        
                          β 
                          ¯ 
                         
                       
                     
                    10080 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}a_{1}(\beta )&=1,\\a_{5}(\beta )&={\frac {\beta ^{4}-\beta {\overline {\beta }}}{12}},\\a_{9}(\beta )&={\frac {-\beta ^{8}-70\beta ^{5}{\overline {\beta }}+336\beta ^{4}+35\beta ^{2}{\overline {\beta }}^{2}-300\beta {\overline {\beta }}}{10080}}\end{aligned}}} 
   
  
^ Zhuravskiy, A. M. (1941). Spravochnik po ellipticheskim funktsiyam  (in Russian). Izd. Akad. Nauk. U.S.S.R. ^ For example, by the quasi-addition formulas, the duplication formulas and the Pythagorean-like identities, we have
  
    
      
        M 
        ( 
        3 
        z 
        ) 
        = 
        − 
        M 
        ( 
        z 
        
          ) 
          
            9 
           
         
        − 
        6 
        M 
        ( 
        z 
        
          ) 
          
            5 
           
         
        N 
        ( 
        z 
        
          ) 
          
            4 
           
         
        + 
        3 
        M 
        ( 
        z 
        ) 
        N 
        ( 
        z 
        
          ) 
          
            8 
           
         
        , 
       
     
    {\displaystyle M(3z)=-M(z)^{9}-6M(z)^{5}N(z)^{4}+3M(z)N(z)^{8},} 
   
 
  
    
      
        N 
        ( 
        3 
        z 
        ) 
        = 
        N 
        ( 
        z 
        
          ) 
          
            9 
           
         
        + 
        6 
        M 
        ( 
        z 
        
          ) 
          
            4 
           
         
        N 
        ( 
        z 
        
          ) 
          
            5 
           
         
        − 
        3 
        M 
        ( 
        z 
        
          ) 
          
            8 
           
         
        N 
        ( 
        z 
        ) 
        , 
       
     
    {\displaystyle N(3z)=N(z)^{9}+6M(z)^{4}N(z)^{5}-3M(z)^{8}N(z),} 
   
 
  
    
      
        sl 
         
        3 
        z 
        = 
        
          
            
              − 
              M 
              ( 
              z 
              
                ) 
                
                  9 
                 
               
              − 
              6 
              M 
              ( 
              z 
              
                ) 
                
                  5 
                 
               
              N 
              ( 
              z 
              
                ) 
                
                  4 
                 
               
              + 
              3 
              M 
              ( 
              z 
              ) 
              N 
              ( 
              z 
              
                ) 
                
                  8 
                 
               
             
            
              N 
              ( 
              z 
              
                ) 
                
                  9 
                 
               
              + 
              6 
              M 
              ( 
              z 
              
                ) 
                
                  4 
                 
               
              N 
              ( 
              z 
              
                ) 
                
                  5 
                 
               
              − 
              3 
              M 
              ( 
              z 
              
                ) 
                
                  8 
                 
               
              N 
              ( 
              z 
              ) 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {sl} 3z={\frac {-M(z)^{9}-6M(z)^{5}N(z)^{4}+3M(z)N(z)^{8}}{N(z)^{9}+6M(z)^{4}N(z)^{5}-3M(z)^{8}N(z)}}.} 
   
 
  
    
      
        N 
        ( 
        z 
        
          ) 
          
            9 
           
         
       
     
    {\displaystyle N(z)^{9}} 
   
 
  
    
      
        sl 
       
     
    {\displaystyle \operatorname {sl} } 
   
 
  
    
      
        sl 
         
        3 
        z 
        = 
        
          
            
              − 
              
                sl 
                
                  9 
                 
               
               
              z 
              − 
              6 
              
                sl 
                
                  5 
                 
               
               
              z 
              + 
              3 
              sl 
               
              z 
             
            
              1 
              + 
              6 
              
                sl 
                
                  4 
                 
               
               
              z 
              − 
              3 
              
                sl 
                
                  8 
                 
               
               
              z 
             
           
         
        . 
       
     
    {\displaystyle \operatorname {sl} 3z={\frac {-\operatorname {sl} ^{9}z-6\operatorname {sl} ^{5}z+3\operatorname {sl} z}{1+6\operatorname {sl} ^{4}z-3\operatorname {sl} ^{8}z}}.} 
   
  ^ Gauss (1866), p. 408 
^ Robinson (2019a) ^ Eymard & Lafon (2004)  p. 234^ Armitage, J. V.; Eberlein, W. F. (2006). Elliptic Functions . Cambridge University Press. p. 49. ISBN  978-0-521-78563-1 . ^ The identity 
  
    
      
        cl 
         
        z 
        = 
        
          cn 
         
        
          ( 
          
            
              
                2 
               
             
            z 
            ; 
            
              
                
                  1 
                  
                    2 
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle \operatorname {cl} z={\operatorname {cn} }\left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)} 
   
 Greenhill (1892)  p. 33 . 
^ Siegel (1969) ^ Sloane, N. J. A.  (ed.). "Sequence A175576" . The On-Line Encyclopedia of Integer Sequences  . OEIS Foundation.^ Berndt, Bruce C. (1989). Ramanujan's Notebooks Part II . Springer. ISBN  978-1-4612-4530-8 . ^ Levin (2006) ; Robinson (2019b) ^ Levin (2006)  p. 515^ a b   Cox (2012)  p. 508, 509^ a b c d   Arakawa, Tsuneo; Ibukiyama, Tomoyoshi; Kaneko, Masanobu (2014). Bernoulli Numbers and Zeta Functions . Springer. ISBN  978-4-431-54918-5 . ^ Equivalently, 
  
    
      
        
          
            H 
           
          
            n 
           
         
        = 
        − 
        
          lim 
          
            z 
            → 
            0 
           
         
        
          
            
              
                d 
               
              
                n 
               
             
            
              
                d 
               
              
                z 
                
                  n 
                 
               
             
           
         
        
          ( 
          
            
              
                
                  ( 
                  1 
                  + 
                  i 
                  ) 
                  z 
                  
                    / 
                   
                  2 
                 
                
                  sl 
                   
                  ( 
                  ( 
                  1 
                  + 
                  i 
                  ) 
                  z 
                  
                    / 
                   
                  2 
                  ) 
                 
               
             
            + 
            
              
                z 
                2 
               
             
            
              
                E 
               
             
            
              ( 
              
                
                  
                    z 
                    2 
                   
                 
                ; 
                i 
               
              ) 
             
           
          ) 
         
       
     
    {\displaystyle \mathrm {H} _{n}=-\lim _{z\to 0}{\frac {\mathrm {d} ^{n}}{\mathrm {d} z^{n}}}\left({\frac {(1+i)z/2}{\operatorname {sl} ((1+i)z/2)}}+{\frac {z}{2}}{\mathcal {E}}\left({\frac {z}{2}};i\right)\right)} 
   
 
  
    
      
        n 
        ≥ 
        4 
       
     
    {\displaystyle n\geq 4} 
   
 
  
    
      
        
          
            E 
           
         
        ( 
        ⋅ 
        ; 
        i 
        ) 
       
     
    {\displaystyle {\mathcal {E}}(\cdot ;i)} 
   
 Jacobi epsilon function  with modulus 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
  
^ The Bernoulli numbers can be determined by an analogous recurrence: 
  
    
      
        
          
            B 
           
          
            2 
            n 
           
         
        = 
        − 
        
          
            1 
            
              2 
              n 
              + 
              1 
             
           
         
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
            − 
            1 
           
         
        
          
            
              ( 
             
            
              
                2 
                n 
               
              
                2 
                k 
               
             
            
              ) 
             
           
         
        
          
            B 
           
          
            2 
            k 
           
         
        
          
            B 
           
          
            2 
            ( 
            n 
            − 
            k 
            ) 
           
         
       
     
    {\displaystyle \mathrm {B} _{2n}=-{\frac {1}{2n+1}}\sum _{k=1}^{n-1}{\binom {2n}{2k}}\mathrm {B} _{2k}\mathrm {B} _{2(n-k)}} 
   
 
  
    
      
        n 
        ≥ 
        2 
       
     
    {\displaystyle n\geq 2} 
   
 
  
    
      
        
          
            B 
           
          
            2 
           
         
        = 
        1 
        
          / 
         
        6 
       
     
    {\displaystyle \mathrm {B} _{2}=1/6} 
   
  
^ Katz, Nicholas M. (1975). "The congruences of Clausen — von Staudt and Kummer for Bernoulli-Hurwitz numbers". Mathematische Annalen . 216  (1): 1– 4. doi :10.1007/BF02547966 . ^ For more on the 
  
    
      
        ν 
       
     
    {\displaystyle \nu } 
   
 Lemniscate constant . 
^ Hurwitz, Adolf (1963). Mathematische Werke: Band II  (in German). Springer Basel AG. ^ Arakawa et al. (2014) define 
  
    
      
        
          
            H 
           
          
            4 
            n 
           
         
       
     
    {\displaystyle \mathrm {H} _{4n}} 
   
 
  
    
      
        1 
        
          / 
         
        
          sl 
          
            2 
           
         
        . 
       
     
    {\displaystyle 1/\operatorname {sl} ^{2}.} 
   
  
^ Eisenstein, G. (1846). "Beiträge zur Theorie der elliptischen Functionen" . Journal für die reine und angewandte Mathematik  (in German). 30 . 
  
    
      
        φ 
        = 
        sl 
       
     
    {\displaystyle \varphi =\operatorname {sl} } 
   
 
  
    
      
        ω 
        = 
        2 
        ϖ 
       
     
    {\displaystyle \omega =2\varpi } 
   
 ^ Ogawa (2005) ^ Peirce (1879) . Guyou (1887)  and Adams (1925)  introduced transverse and oblique aspects  of the same projection, respectively. Also see Lee (1976) . These authors write their projection formulas in terms of Jacobi elliptic functions, with a square lattice.^ Adams (1925) ^ Adams (1925) ; Lee (1976) .^ Rančić, Purser & Mesinger (1996) ; McGregor (2005) .  
References 
Abel, Niels Henrik  (1827–1828) "Recherches sur les fonctions elliptiques" [Research on elliptic functions] (in French). Crelle's Journal Part 1 . 1827. 2  (2): 101–181. doi :10.1515/crll.1827.2.101 .Part 2 . 1828. 3  (3): 160–190. doi :10.1515/crll.1828.3.160 .Adams, Oscar S.  (1925). Elliptic Functions Applied to Conformal World Maps (PDF) . U.S. Coast and Geodetic Survey. US Government Printing Office. Special Pub. No. 112.Ayoub, Raymond (1984). "The Lemniscate and Fagnano's Contributions to Elliptic Integrals". Archive for History of Exact Sciences . 29  (2): 131– 149. doi :10.1007/BF00348244 . Berndt, Bruce C. (1994). Ramanujan's Notebooks Part IV  (First ed.). Springer. ISBN  978-1-4612-6932-8 . Borwein, Jonatham M. ; Borwein, Peter B.  (1987). "2.7 The Landen Transformation". Pi and the AGM . Wiley-Interscience. p. 60.Bottazzini, Umberto ; Gray, Jeremy  (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory . Springer. doi :10.1007/978-1-4614-5725-1 . ISBN  978-1-4614-5724-4 .Carlson, Billie C. (2010). "19. Elliptic Integrals" . In Olver, Frank ; et al. (eds.). NIST Handbook of Mathematical Functions  Cox, David Archibald  (1984). "The Arithmetic-Geometric Mean of Gauss" . L'Enseignement Mathématique . 30  (2): 275– 330.Cox, David Archibald; Shurman, Jerry (2005). "Geometry and number theory on clovers"  (PDF) . The American Mathematical Monthly . 112  (8): 682– 704. doi :10.1080/00029890.2005.11920241 . Cox, David Archibald (2012). "The Lemniscate". Galois Theory . Wiley. pp. 463– 514. doi :10.1002/9781118218457.ch15 . ISBN  978-1-118-07205-9 . Cox, David Archibald (2013). Primes of the Form  x 2  + ny 2  Cox, David Archibald; Hyde, Trevor (2014). "The Galois theory of the lemniscate"  (PDF) . Journal of Number Theory . 135 : 43– 59. arXiv :1208.2653 doi :10.1016/j.jnt.2013.08.006 . Enneper, Alfred  (1890) [1st ed. 1876]. "Note III: Historische Notizen über geometrische Anwendungen elliptischer Integrale."  [Historical notes on geometric applications of elliptic integrals]. Elliptische Functionen, Theorie und Geschichte  (in German). Nebert. pp. 524– 547.Euler, Leonhard  (1761). "Observationes de comparatione arcuum curvarum irrectificibilium"  [Observations on the comparison of arcs of irrectifiable curves]. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae  (in Latin). 6 : 58– 84.E 252 . (Figures )Euler, Leonhard (1786). "De miris proprietatibus curvae elasticae sub aequatione 
  
    
      
        y 
        = 
        ∫ 
        x 
        x 
        
          
            d 
           
          x 
         
         
        
          
            / 
           
         
        
          
            1 
            − 
            
              x 
              
                4 
               
             
           
         
       
     
    {\textstyle y=\int xx\mathop {\mathrm {d} x} {\big /}{\sqrt {1-x^{4}}}} 
   
   [On the amazing properties of elastic curves contained in equation 
  
    
      
        y 
        = 
        ∫ 
        x 
        x 
        
          
            d 
           
          x 
         
         
        
          
            / 
           
         
        
          
            1 
            − 
            
              x 
              
                4 
               
             
           
         
       
     
    {\textstyle y=\int xx\mathop {\mathrm {d} x} {\big /}{\sqrt {1-x^{4}}}} 
   
 Acta Academiae Scientiarum Imperialis Petropolitanae  (in Latin). 1782  (2): 34– 61. 605 .Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi . Translated by Wilson, Stephen. American Mathematical Society. ISBN  0-8218-3246-8 . Fagnano, Giulio Carlo  (1718–1723) "Metodo per misurare la lemniscata" [Method for measuring the lemniscate]. Giornale de' letterati d'Italia  (in Italian)."Schediasma primo"  [Part 1]. 1718. 29 : 258–269."Giunte al primo schediasma"  [Addendum to part 1]. 1723. 34 : 197–207."Schediasma secondo"  [Part 2]. 1718. 30 : 87–111.Fagnano (1850). "32–34. Metodo per misurare la lemniscata" . Opere Matematiche, vol. 2 . Allerighi e Segati. pp. 293– 313. Figures )Gauss, Carl Friedrich  (1917). Werke (Band X, Abteilung I) Gómez-Molleda, M. A.; Lario, Joan-C. (2019). "Ruler and Compass Constructions of the Equilateral Triangle and Pentagon in the Lemniscate Curve". The Mathematical Intelligencer . 41  (4): 17– 21. doi :10.1007/s00283-019-09892-w . Greenhill, Alfred George  (1892). The Applications of Elliptic Functions Guyou, Émile (1887). "Nouveau système de projection de la sphère: Généralisation de la projection de Mercator"  [New system of projection of the sphere]. Annales Hydrographiques . Série 2 (in French). 9 : 16– 35. Houzel, Christian (1978). "Fonctions elliptiques et intégrales abéliennes" [Elliptic functions and Abelian integrals]. In Dieudonné, Jean  (ed.). Abrégé d'histoire des mathématiques, 1700–1900. II  (in French). Hermann. pp. 1– 113. Hyde, Trevor (2014). "A Wallis product on clovers"  (PDF) . The American Mathematical Monthly . 121  (3): 237– 243. doi :10.4169/amer.math.monthly.121.03.237 . Kubota, Tomio  (1964). "Some arithmetical applications of an elliptic function". Crelle's Journal . 214 /215 : 141– 145. doi :10.1515/crll.1964.214-215.141 .Langer, Joel C.; Singer, David A. (2010). "Reflections on the Lemniscate of Bernoulli: The Forty-Eight Faces of a Mathematical Gem"  (PDF) . Milan Journal of Mathematics . 78  (2): 643– 682. doi :10.1007/s00032-010-0124-5 . Langer, Joel C.; Singer, David A. (2011). "The lemniscatic chessboard" . Forum Geometricorum . 11 : 183– 199. Lawden, Derek Frank  (1989). Elliptic Functions and Applications . Applied Mathematical Sciences. Vol. 80. Springer-Verlag. doi :10.1007/978-1-4757-3980-0 . ISBN  978-1-4419-3090-3 .Lee, L. P.  (1976). Conformal Projections Based on Elliptic Functions Cartographica Monographs . Vol. 16. Toronto: B. V. Gutsell, York University. ISBN  0-919870-16-3 .The Canadian Cartographer  13 Lemmermeyer, Franz (2000). Reciprocity Laws: From Euler to Eisenstein . Springer. ISBN  3-540-66957-4 . Levien, Raph  (2008). The elastica: a mathematical history (PDF)  (Technical report). University of California at Berkeley. UCB/EECS-2008-103.Levin, Aaron (2006). "A Geometric Interpretation of an Infinite Product for the Lemniscate Constant"  (PDF) . The American Mathematical Monthly . 113  (6): 510– 520. doi :10.1080/00029890.2006.11920331 . JSTOR  27641976 . Lindqvist, Peter; Peetre, Jaak  (2001). "Two Remarkable Identities, Called Twos, for Inverses to Some Abelian Integrals"  (PDF) . The American Mathematical Monthly . 108  (5): 403– 410. doi :10.1080/00029890.2001.11919766 . Archived from the original  (PDF)  on 2022-05-28. Markushevich, Aleksei Ivanovich  (1966). The Remarkable Sine Functions Markushevich, Aleksei Ivanovich (1992). Introduction to the Classical Theory of Abelian Functions . Translations of Mathematical Monographs. Vol. 96. American Mathematical Society. doi :10.1090/mmono/096 . ISBN  978-0-8218-4164-8 . McGregor, John L. (2005). C-CAM: Geometric Aspects and Dynamical Formulation CSIRO Atmospheric Research . 70. McKean, Henry ; Moll, Victor  (1999). Elliptic Curves: Function Theory, Geometry, Arithmetic ISBN  9780521582285 .Milne-Thomson, Louis Melville  (1964). "16. Jacobian Elliptic Functions and Theta Functions" . In Abramowitz, Milton ; Stegun, Irene Ann  (eds.). Handbook of Mathematical Functions 567– 585.Neuman, Edward  (2007). "On Gauss lemniscate functions and lemniscatic mean"  (PDF) . Mathematica Pannonica . 18  (1): 77– 94.Nishimura, Ryo (2015). "New properties of the lemniscate function and its transformation" . Journal of Mathematical Analysis and Applications . 427  (1): 460– 468. doi :10.1016/j.jmaa.2015.02.066  Ogawa, Takuma (2005). "Similarities between the trigonometric function and the lemniscate function from arithmetic view point" . Tsukuba Journal of Mathematics . 29  (1). doi :10.21099/tkbjm/1496164894  Peirce, Charles Sanders  (1879). "A Quincuncial Projection of the Sphere" . American Journal of Mathematics . 2  (4): 394– 397. doi :10.2307/2369491 JSTOR  2369491 Popescu-Pampu, Patrick (2016). What is the Genus? . Lecture Notes in Mathematics. Vol. 2162. Springer. doi :10.1007/978-3-319-42312-8 . ISBN  978-3-319-42311-1 . Prasolov, Viktor; Solovyev, Yuri (1997). "4. Abel's Theorem on Division of Lemniscate". Elliptic functions and elliptic integrals . Translations of Mathematical Monographs. Vol. 170. American Mathematical Society. doi :10.1090/mmono/170 . ISBN  978-0-8218-0587-9 . Rančić, Miodrag; Purser, R. James; Mesinger, Fedor (1996). "A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates". Quarterly Journal of the Royal Meteorological Society . 122  (532): 959– 982. doi :10.1002/qj.49712253209 . Reinhardt, William P.; Walker, Peter L. (2010a). "22. Jacobian Elliptic Functions" . In Olver, Frank; et al. (eds.). NIST Handbook of Mathematical Functions  Reinhardt, William P.; Walker, Peter L. (2010b). "23. Weierstrass Elliptic and Modular Functions" . In Olver, Frank; et al. (eds.). NIST Handbook of Mathematical Functions  Robinson, Paul L. (2019a). The Lemniscatic Functions arXiv :1902.08614  Robinson, Paul L. (2019b). The Elliptic Functions in a First-Order System arXiv :1903.07147  Rosen, Michael  (1981). "Abel's Theorem on the Lemniscate". The American Mathematical Monthly . 88  (6): 387– 395. doi :10.1080/00029890.1981.11995279 . JSTOR  2321821 .Roy, Ranjan (2017). Elliptic and Modular Functions from Gauss to Dedekind to Hecke . Cambridge University Press. p. 28. ISBN  978-1-107-15938-9 . Schappacher, Norbert  (1997). "Some milestones of lemniscatomy"  (PDF) . In Sertöz, S. (ed.). Algebraic Geometry  (Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey). Marcel Dekker. pp. 257– 290.Schneider, Theodor  (1937). "Arithmetische Untersuchungen elliptischer Integrale"  [Arithmetic investigations of elliptic integrals]. Mathematische Annalen  (in German). 113  (1): 1– 13. doi :10.1007/BF01571618 .Schwarz, Hermann Amandus  (1869). "Ueber einige Abbildungsaufgaben"  [About some mapping problems]. Crelle's Journal  (in German). 70 : 105– 120. doi :10.1515/crll.1869.70.105 .Siegel, Carl Ludwig  (1969). "1. Elliptic Functions". Topics in Complex Function Theory, Vol. I . Wiley-Interscience. pp. 1– 89. ISBN  0-471-60844-0 .Snape, Jamie (2004). "Bernoulli's Lemniscate" . Applications of Elliptic Functions in Classical and Algebraic Geometry  (Thesis). University of Durham. pp. 50– 56. Southard, Thomas H. (1964). "18. Weierstrass Elliptic and Related Functions" . In Abramowitz, Milton ; Stegun, Irene Ann  (eds.). Handbook of Mathematical Functions 627– 683. Sridharan, Ramaiyengar  (2004) "Physics to Mathematics: from Lintearia to Lemniscate". Resonance . "Part I" . 9  (4): 21–29. doi :10.1007/BF02834853 . "Part II: Gauss and Landen's Work" . 9  (6): 11–20. doi :10.1007/BF02839214 .Todd, John  (1975). "The lemniscate constants" . Communications of the ACM . 18  (1): 14– 19. doi :10.1145/360569.360580 Whittaker, Edmund Taylor ; Watson, George Neville  (1920) [1st ed. 1902]. "22.8 The lemniscate functions" . A Course of Modern Analysis 524– 528.Whittaker, Edmund Taylor ; Watson, George Neville  (1927) [4th ed. 1927]. "21 The theta functions". A Course of Modern Analysis 469– 470. 
External links