Bernoulli polynomials In mathematics , the Bernoulli polynomials , named after Jacob Bernoulli , combine the Bernoulli numbers  and binomial coefficients . They are used for series expansion  of functions , and with the Euler–MacLaurin formula .
These polynomials  occur in the study of many special functions  and, in particular, the Riemann zeta function  and the Hurwitz zeta function .  They are an Appell sequence  (i.e. a Sheffer sequence  for the ordinary derivative  operator). For the Bernoulli polynomials, the number of crossings of the x -axis in the unit interval  does not go up with the degree . In the limit of large degree, they approach, when appropriately scaled, the sine and cosine functions .
A similar set of polynomials, based on a generating function, is the family of Euler polynomials .
Representations 
The Bernoulli polynomials B n generating function . They also admit a variety of derived representations.
Generating functions 
The generating function for the Bernoulli polynomials is
  
    
      
        
          
            
              t 
              
                e 
                
                  x 
                  t 
                 
               
             
            
              
                e 
                
                  t 
                 
               
              − 
              1 
             
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        
          
            
              t 
              
                n 
               
             
            
              n 
              ! 
             
           
         
        . 
       
     
    {\displaystyle {\frac {te^{xt}}{e^{t}-1}}=\sum _{n=0}^{\infty }B_{n}(x){\frac {t^{n}}{n!}}.} 
   
 
  
    
      
        
          
            
              2 
              
                e 
                
                  x 
                  t 
                 
               
             
            
              
                e 
                
                  t 
                 
               
              + 
              1 
             
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          E 
          
            n 
           
         
        ( 
        x 
        ) 
        
          
            
              t 
              
                n 
               
             
            
              n 
              ! 
             
           
         
        . 
       
     
    {\displaystyle {\frac {2e^{xt}}{e^{t}+1}}=\sum _{n=0}^{\infty }E_{n}(x){\frac {t^{n}}{n!}}.} 
   
 
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        
          B 
          
            n 
            − 
            k 
           
         
        
          x 
          
            k 
           
         
        , 
       
     
    {\displaystyle B_{n}(x)=\sum _{k=0}^{n}{n \choose k}B_{n-k}x^{k},} 
   
 
  
    
      
        
          E 
          
            m 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            m 
           
         
        
          
            
              ( 
             
            
              m 
              k 
             
            
              ) 
             
           
         
        
          
            
              E 
              
                k 
               
             
            
              2 
              
                k 
               
             
           
         
        
          
            ( 
            
              x 
              − 
              
                
                  
                    1 
                    2 
                   
                 
               
             
            ) 
           
          
            m 
            − 
            k 
           
         
        . 
       
     
    {\displaystyle E_{m}(x)=\sum _{k=0}^{m}{m \choose k}{\frac {E_{k}}{2^{k}}}\left(x-{\tfrac {1}{2}}\right)^{m-k}.} 
   
 
  
    
      
        n 
        ≥ 
        0 
       
     
    {\displaystyle n\geq 0} 
   
 
  
    
      
        
          B 
          
            k 
           
         
       
     
    {\displaystyle B_{k}} 
   
 Bernoulli numbers , and 
  
    
      
        
          E 
          
            k 
           
         
       
     
    {\displaystyle E_{k}} 
   
 Euler numbers . It follows that  
  
    
      
        
          B 
          
            n 
           
         
        ( 
        0 
        ) 
        = 
        
          B 
          
            n 
           
         
       
     
    {\displaystyle B_{n}(0)=B_{n}} 
   
 
  
    
      
        
          E 
          
            m 
           
         
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        
          
            ) 
           
         
        = 
        
          
            
              1 
              
                2 
                
                  m 
                 
               
             
           
         
        
          E 
          
            m 
           
         
       
     
    {\displaystyle E_{m}{\big (}{\tfrac {1}{2}}{\big )}={\tfrac {1}{2^{m}}}E_{m}} 
   
 
Representation by a differential operator 
The Bernoulli polynomials are also given by
  
    
      
          
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          
            D 
            
                
              
                e 
                
                  D 
                 
               
              − 
              1 
                
             
           
         
          
        
          x 
          
            n 
           
         
          
       
     
    {\displaystyle \ B_{n}(x)={\frac {D}{\ e^{D}-1\ }}\ x^{n}\ } 
   
 
  
    
      
          
        D 
        ≡ 
        
          
            
              d 
             
            
                
              
                d 
               
              x 
                
             
           
         
          
       
     
    {\displaystyle \ D\equiv {\frac {\mathrm {d} }{\ \mathrm {d} x\ }}\ } 
   
 x  and the fraction is expanded as a formal power series . It follows that 
  
    
      
          
        
          ∫ 
          
            a 
           
          
            x 
           
         
          
        
          B 
          
            n 
           
         
        ( 
        u 
        ) 
          
        
          d 
         
          
        u 
        = 
        
          
            
                
              
                B 
                
                  n 
                  + 
                  1 
                 
               
              ( 
              x 
              ) 
              − 
              
                B 
                
                  n 
                  + 
                  1 
                 
               
              ( 
              a 
              ) 
                
             
            
              n 
              + 
              1 
             
           
         
          
        . 
       
     
    {\displaystyle \ \int _{a}^{x}\ B_{n}(u)\ \mathrm {d} \ u={\frac {\ B_{n+1}(x)-B_{n+1}(a)\ }{n+1}}~.} 
   
 § Integrals  below. By the same token, the Euler polynomials are given by
  
    
      
          
        
          E 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          
            2 
            
                
              
                e 
                
                  D 
                 
               
              + 
              1 
                
             
           
         
          
        
          x 
          
            n 
           
         
          
        . 
       
     
    {\displaystyle \ E_{n}(x)={\frac {2}{\ e^{D}+1\ }}\ x^{n}~.} 
   
 
Representation by an integral operator 
The Bernoulli polynomials are also the unique polynomials determined by
  
    
      
        
          ∫ 
          
            x 
           
          
            x 
            + 
            1 
           
         
        
          B 
          
            n 
           
         
        ( 
        u 
        ) 
        d 
        u 
        = 
        
          x 
          
            n 
           
         
        . 
       
     
    {\displaystyle \int _{x}^{x+1}B_{n}(u)\,du=x^{n}.} 
   
 
The integral transform 
  
    
      
        ( 
        T 
        f 
        ) 
        ( 
        x 
        ) 
        = 
        
          ∫ 
          
            x 
           
          
            x 
            + 
            1 
           
         
        f 
        ( 
        u 
        ) 
        d 
        u 
       
     
    {\displaystyle (Tf)(x)=\int _{x}^{x+1}f(u)\,du} 
   
 f , simply amounts to 
  
    
      
        
          
            
              
                ( 
                T 
                f 
                ) 
                ( 
                x 
                ) 
                = 
                
                  
                    
                      
                        e 
                        
                          D 
                         
                       
                      − 
                      1 
                     
                    D 
                   
                 
                f 
                ( 
                x 
                ) 
               
              
                
                 
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      D 
                      
                        n 
                       
                     
                    
                      ( 
                      n 
                      + 
                      1 
                      ) 
                      ! 
                     
                   
                 
                f 
                ( 
                x 
                ) 
               
             
            
              
                
                 
                = 
                f 
                ( 
                x 
                ) 
                + 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    2 
                   
                 
                + 
                
                  
                    
                      
                        f 
                        ″ 
                       
                      ( 
                      x 
                      ) 
                     
                    6 
                   
                 
                + 
                
                  
                    
                      
                        f 
                        ‴ 
                       
                      ( 
                      x 
                      ) 
                     
                    24 
                   
                 
                + 
                ⋯ 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}(Tf)(x)={e^{D}-1 \over D}f(x)&{}=\sum _{n=0}^{\infty }{D^{n} \over (n+1)!}f(x)\\&{}=f(x)+{f'(x) \over 2}+{f''(x) \over 6}+{f'''(x) \over 24}+\cdots .\end{aligned}}} 
   
 inversion formulae below .
Integral Recurrence 
In,[ 1] [ 2] 
  
    
      
        
          B 
          
            m 
           
         
        ( 
        x 
        ) 
        = 
        m 
        
          ∫ 
          
            0 
           
          
            x 
           
         
        
          B 
          
            m 
            − 
            1 
           
         
        ( 
        t 
        ) 
        d 
        t 
        − 
        m 
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          ∫ 
          
            0 
           
          
            t 
           
         
        
          B 
          
            m 
            − 
            1 
           
         
        ( 
        s 
        ) 
        d 
        s 
        d 
        t 
        . 
       
     
    {\displaystyle B_{m}(x)=m\int _{0}^{x}B_{m-1}(t)\,dt-m\int _{0}^{1}\int _{0}^{t}B_{m-1}(s)\,dsdt.} 
   
 
An explicit formula for the Bernoulli polynomials is given by
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          
            [ 
           
         
        
          
            1 
            
              k 
              + 
              1 
             
           
         
        
          ∑ 
          
            ℓ 
            = 
            0 
           
          
            k 
           
         
        ( 
        − 
        1 
        
          ) 
          
            ℓ 
           
         
        
          
            
              ( 
             
            
              k 
              ℓ 
             
            
              ) 
             
           
         
        ( 
        x 
        + 
        ℓ 
        
          ) 
          
            n 
           
         
        
          
            ] 
           
         
        . 
       
     
    {\displaystyle B_{n}(x)=\sum _{k=0}^{n}{\biggl [}{\frac {1}{k+1}}\sum _{\ell =0}^{k}(-1)^{\ell }{k \choose \ell }(x+\ell )^{n}{\biggr ]}.} 
   
 
That is similar to the series expression for the Hurwitz zeta function  in the complex plane. Indeed, there is the relationship
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        − 
        n 
        ζ 
        ( 
        1 
        − 
        n 
        , 
        x 
        ) 
       
     
    {\displaystyle B_{n}(x)=-n\zeta (1-n,\,x)} 
   
 
  
    
      
        ζ 
        ( 
        s 
        , 
        q 
        ) 
       
     
    {\displaystyle \zeta (s,\,q)} 
   
 Hurwitz zeta function . The latter generalizes the Bernoulli polynomials, allowing for non-integer values of n . 
The inner sum may be understood to be the n th forward difference  of 
  
    
      
        
          x 
          
            m 
           
         
        , 
       
     
    {\displaystyle x^{m},} 
   
 
  
    
      
        
          Δ 
          
            n 
           
         
        
          x 
          
            m 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        ( 
        − 
        1 
        
          ) 
          
            n 
            − 
            k 
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        ( 
        x 
        + 
        k 
        
          ) 
          
            m 
           
         
       
     
    {\displaystyle \Delta ^{n}x^{m}=\sum _{k=0}^{n}(-1)^{n-k}{n \choose k}(x+k)^{m}} 
   
 
  
    
      
        Δ 
       
     
    {\displaystyle \Delta } 
   
 forward difference operator . Thus, one may write
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  k 
                 
               
             
            
              k 
              + 
              1 
             
           
         
        
          Δ 
          
            k 
           
         
        
          x 
          
            n 
           
         
        . 
       
     
    {\displaystyle B_{n}(x)=\sum _{k=0}^{n}{\frac {(-1)^{k}}{k+1}}\Delta ^{k}x^{n}.} 
   
 
This formula may be derived from an identity appearing above as follows. Since the forward difference operator Δ  equals
  
    
      
        Δ 
        = 
        
          e 
          
            D 
           
         
        − 
        1 
       
     
    {\displaystyle \Delta =e^{D}-1} 
   
 D  is differentiation with respect to x , we have, from the Mercator series ,
  
    
      
        
          
            D 
            
              
                e 
                
                  D 
                 
               
              − 
              1 
             
           
         
        = 
        
          
            
              log 
               
              ( 
              Δ 
              + 
              1 
              ) 
             
            Δ 
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              Δ 
              
                ) 
                
                  n 
                 
               
             
            
              n 
              + 
              1 
             
           
         
        . 
       
     
    {\displaystyle {\frac {D}{e^{D}-1}}={\frac {\log(\Delta +1)}{\Delta }}=\sum _{n=0}^{\infty }{\frac {(-\Delta )^{n}}{n+1}}.} 
   
 
As long as this operates on an m th-degree polynomial such as 
  
    
      
        
          x 
          
            m 
           
         
        , 
       
     
    {\displaystyle x^{m},} 
   
 n  go from 0  only up to m . 
An integral representation for the Bernoulli polynomials is given by the Nörlund–Rice integral , which follows from the expression as a finite difference.
An explicit formula for the Euler polynomials is given by
  
    
      
        
          E 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          [ 
          
            
              
                1 
                
                  2 
                  
                    k 
                   
                 
               
             
            
              ∑ 
              
                ℓ 
                = 
                0 
               
              
                n 
               
             
            ( 
            − 
            1 
            
              ) 
              
                ℓ 
               
             
            
              
                
                  ( 
                 
                
                  k 
                  ℓ 
                 
                
                  ) 
                 
               
             
            ( 
            x 
            + 
            ℓ 
            
              ) 
              
                n 
               
             
           
          ] 
         
        . 
       
     
    {\displaystyle E_{n}(x)=\sum _{k=0}^{n}\left[{\frac {1}{2^{k}}}\sum _{\ell =0}^{n}(-1)^{\ell }{k \choose \ell }(x+\ell )^{n}\right].} 
   
 
The above follows analogously, using the fact that
  
    
      
        
          
            2 
            
              
                e 
                
                  D 
                 
               
              + 
              1 
             
           
         
        = 
        
          
            1 
            
              1 
              + 
              
                
                  
                    1 
                    2 
                   
                 
               
              Δ 
             
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            ( 
           
         
        
          − 
          
            
              
                1 
                2 
               
             
           
         
        Δ 
        
          
            
              ) 
             
           
          
            n 
           
         
        . 
       
     
    {\displaystyle {\frac {2}{e^{D}+1}}={\frac {1}{1+{\tfrac {1}{2}}\Delta }}=\sum _{n=0}^{\infty }{\bigl (}{-{\tfrac {1}{2}}}\Delta {\bigr )}^{n}.} 
   
 
Sums of p th powers 
Using either the above integral representation  of 
  
    
      
        
          x 
          
            n 
           
         
       
     
    {\displaystyle x^{n}} 
   
 identity  
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        + 
        1 
        ) 
        − 
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        n 
        
          x 
          
            n 
            − 
            1 
           
         
       
     
    {\displaystyle B_{n}(x+1)-B_{n}(x)=nx^{n-1}} 
   
 
  
    
      
        
          ∑ 
          
            k 
            = 
            0 
           
          
            x 
           
         
        
          k 
          
            p 
           
         
        = 
        
          ∫ 
          
            0 
           
          
            x 
            + 
            1 
           
         
        
          B 
          
            p 
           
         
        ( 
        t 
        ) 
        d 
        t 
        = 
        
          
            
              
                B 
                
                  p 
                  + 
                  1 
                 
               
              ( 
              x 
              + 
              1 
              ) 
              − 
              
                B 
                
                  p 
                  + 
                  1 
                 
               
             
            
              p 
              + 
              1 
             
           
         
       
     
    {\displaystyle \sum _{k=0}^{x}k^{p}=\int _{0}^{x+1}B_{p}(t)\,dt={\frac {B_{p+1}(x+1)-B_{p+1}}{p+1}}} 
   
 0  = 1).
Explicit expressions for low degrees 
The first few Bernoulli polynomials are:
  
    
      
        
          
            
              
                
                  B 
                  
                    0 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                1 
                , 
               
              
                
                  B 
                  
                    4 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    4 
                   
                 
                − 
                2 
                
                  x 
                  
                    3 
                   
                 
                + 
                
                  x 
                  
                    2 
                   
                 
                − 
                
                  
                    
                      1 
                      30 
                     
                   
                 
                , 
               
             
            
              
                
                  B 
                  
                    1 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                x 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                , 
               
              
                
                  B 
                  
                    5 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    5 
                   
                 
                − 
                
                  
                    
                      5 
                      2 
                     
                   
                 
                
                  x 
                  
                    4 
                   
                 
                + 
                
                  
                    
                      5 
                      3 
                     
                   
                 
                
                  x 
                  
                    3 
                   
                 
                − 
                
                  
                    
                      1 
                      6 
                     
                   
                 
                x 
                , 
               
             
            
              
                
                  B 
                  
                    2 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    2 
                   
                 
                − 
                x 
                + 
                
                  
                    
                      1 
                      6 
                     
                   
                 
                , 
               
              
                
                  B 
                  
                    6 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    6 
                   
                 
                − 
                3 
                
                  x 
                  
                    5 
                   
                 
                + 
                
                  
                    
                      5 
                      2 
                     
                   
                 
                
                  x 
                  
                    4 
                   
                 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  x 
                  
                    2 
                   
                 
                + 
                
                  
                    
                      1 
                      42 
                     
                   
                 
                , 
               
             
            
              
                
                  B 
                  
                    3 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    3 
                   
                 
                − 
                
                  
                    
                      3 
                      2 
                     
                   
                 
                
                  x 
                  
                    2 
                   
                 
                + 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                x 
                
                  
                    
                      
                        
                          | 
                         
                       
                     
                   
                 
                , 
                 
              
                  
                ⋮ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}B_{0}(x)&=1,&B_{4}(x)&=x^{4}-2x^{3}+x^{2}-{\tfrac {1}{30}},\\[4mu]B_{1}(x)&=x-{\tfrac {1}{2}},&B_{5}(x)&=x^{5}-{\tfrac {5}{2}}x^{4}+{\tfrac {5}{3}}x^{3}-{\tfrac {1}{6}}x,\\[4mu]B_{2}(x)&=x^{2}-x+{\tfrac {1}{6}},&B_{6}(x)&=x^{6}-3x^{5}+{\tfrac {5}{2}}x^{4}-{\tfrac {1}{2}}x^{2}+{\tfrac {1}{42}},\\[-2mu]B_{3}(x)&=x^{3}-{\tfrac {3}{2}}x^{2}+{\tfrac {1}{2}}x{\vphantom {\Big |}},\qquad &&\ \,\,\vdots \end{aligned}}} 
   
 
The first few Euler polynomials are:
  
    
      
        
          
            
              
                
                  E 
                  
                    0 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                1 
                , 
               
              
                
                  E 
                  
                    4 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    4 
                   
                 
                − 
                2 
                
                  x 
                  
                    3 
                   
                 
                + 
                x 
                , 
               
             
            
              
                
                  E 
                  
                    1 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                x 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                , 
               
              
                
                  E 
                  
                    5 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    5 
                   
                 
                − 
                
                  
                    
                      5 
                      2 
                     
                   
                 
                
                  x 
                  
                    4 
                   
                 
                + 
                
                  
                    
                      5 
                      2 
                     
                   
                 
                
                  x 
                  
                    2 
                   
                 
                − 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                , 
               
             
            
              
                
                  E 
                  
                    2 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    2 
                   
                 
                − 
                x 
                , 
               
              
                
                  E 
                  
                    6 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    6 
                   
                 
                − 
                3 
                
                  x 
                  
                    5 
                   
                 
                + 
                5 
                
                  x 
                  
                    3 
                   
                 
                − 
                3 
                x 
                , 
               
             
            
              
                
                  E 
                  
                    3 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  x 
                  
                    3 
                   
                 
                − 
                
                  
                    
                      3 
                      2 
                     
                   
                 
                
                  x 
                  
                    2 
                   
                 
                + 
                
                  
                    
                      1 
                      4 
                     
                   
                 
                , 
                  
                  
               
              
                  
                ⋮ 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}E_{0}(x)&=1,&E_{4}(x)&=x^{4}-2x^{3}+x,\\[4mu]E_{1}(x)&=x-{\tfrac {1}{2}},&E_{5}(x)&=x^{5}-{\tfrac {5}{2}}x^{4}+{\tfrac {5}{2}}x^{2}-{\tfrac {1}{2}},\\[4mu]E_{2}(x)&=x^{2}-x,&E_{6}(x)&=x^{6}-3x^{5}+5x^{3}-3x,\\[-1mu]E_{3}(x)&=x^{3}-{\tfrac {3}{2}}x^{2}+{\tfrac {1}{4}},\qquad \ \ &&\ \,\,\vdots \end{aligned}}} 
   
 
Maximum and minimum 
At higher n  the amount of variation in 
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle B_{n}(x)} 
   
 
  
    
      
        x 
        = 
        0 
       
     
    {\displaystyle x=0} 
   
 
  
    
      
        x 
        = 
        1 
       
     
    {\displaystyle x=1} 
   
 
  
    
      
        
          B 
          
            16 
           
         
        ( 
        0 
        ) 
        = 
        
          B 
          
            16 
           
         
        ( 
        1 
        ) 
        = 
        
         
       
     
    {\displaystyle B_{16}(0)=B_{16}(1)={}} 
   
 
  
    
      
        − 
        
          
            
              3617 
              510 
             
           
         
        ≈ 
        − 
        7.09 
        , 
       
     
    {\displaystyle -{\tfrac {3617}{510}}\approx -7.09,} 
   
 
  
    
      
        
          B 
          
            16 
           
         
        
          
            ( 
           
         
        
          
            
              1 
              2 
             
           
         
        
          
            ) 
           
         
        = 
        
         
       
     
    {\displaystyle B_{16}{\bigl (}{\tfrac {1}{2}}{\bigr )}={}} 
   
 
  
    
      
        
          
            
              118518239 
              3342336 
             
           
         
        ≈ 
        7.09. 
       
     
    {\displaystyle {\tfrac {118518239}{3342336}}\approx 7.09.} 
   
 Lehmer  (1940)[ 3] Mn  ) of 
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle B_{n}(x)} 
   
 0   and  1   obeys
  
    
      
        
          M 
          
            n 
           
         
        < 
        
          
            
              2 
              n 
              ! 
             
            
              ( 
              2 
              π 
              
                ) 
                
                  n 
                 
               
             
           
         
       
     
    {\displaystyle M_{n}<{\frac {2n!}{(2\pi )^{n}}}} 
   
 n  is 2 modulo 4 ,
  
    
      
        
          M 
          
            n 
           
         
        = 
        
          
            
              2 
              ζ 
              ( 
              n 
              ) 
              n 
              ! 
             
            
              ( 
              2 
              π 
              
                ) 
                
                  n 
                 
               
             
           
         
       
     
    {\displaystyle M_{n}={\frac {2\zeta (n)\,n!}{(2\pi )^{n}}}} 
   
 
  
    
      
        ζ 
        ( 
        x 
        ) 
       
     
    {\displaystyle \zeta (x)} 
   
 Riemann zeta function ), while the minimum (mn  ) obeys
  
    
      
        
          m 
          
            n 
           
         
        > 
        
          
            
              − 
              2 
              n 
              ! 
             
            
              ( 
              2 
              π 
              
                ) 
                
                  n 
                 
               
             
           
         
       
     
    {\displaystyle m_{n}>{\frac {-2n!}{(2\pi )^{n}}}} 
   
  n  = 0 modulo 4  in which case
  
    
      
        
          m 
          
            n 
           
         
        = 
        
          
            
              − 
              2 
              ζ 
              ( 
              n 
              ) 
              n 
              ! 
             
            
              ( 
              2 
              π 
              
                ) 
                
                  n 
                 
               
             
           
         
        . 
       
     
    {\displaystyle m_{n}={\frac {-2\zeta (n)\,n!}{(2\pi )^{n}}}.} 
   
 
These limits are quite close to the actual maximum and minimum, and Lehmer gives more accurate limits as well.
Differences and derivatives 
The Bernoulli and Euler polynomials obey many relations from umbral calculus :
  
    
      
        
          
            
              
                Δ 
                
                  B 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  B 
                  
                    n 
                   
                 
                ( 
                x 
                + 
                1 
                ) 
                − 
                
                  B 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
                = 
                n 
                
                  x 
                  
                    n 
                    − 
                    1 
                   
                 
                , 
               
             
            
              
                Δ 
                
                  E 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  E 
                  
                    n 
                   
                 
                ( 
                x 
                + 
                1 
                ) 
                − 
                
                  E 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
                = 
                2 
                ( 
                
                  x 
                  
                    n 
                   
                 
                − 
                
                  E 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\Delta B_{n}(x)&=B_{n}(x+1)-B_{n}(x)=nx^{n-1},\\[3mu]\Delta E_{n}(x)&=E_{n}(x+1)-E_{n}(x)=2(x^{n}-E_{n}(x)).\end{aligned}}} 
   
 Δ  is the forward difference operator ). Also,
  
    
      
        
          E 
          
            n 
           
         
        ( 
        x 
        + 
        1 
        ) 
        + 
        
          E 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        2 
        
          x 
          
            n 
           
         
        . 
       
     
    {\displaystyle E_{n}(x+1)+E_{n}(x)=2x^{n}.} 
   
 polynomial sequences  are Appell sequences :
  
    
      
        
          
            
              
                
                  B 
                  
                    n 
                   
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                n 
                
                  B 
                  
                    n 
                    − 
                    1 
                   
                 
                ( 
                x 
                ) 
                , 
               
             
            
              
                
                  E 
                  
                    n 
                   
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                n 
                
                  E 
                  
                    n 
                    − 
                    1 
                   
                 
                ( 
                x 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}B_{n}'(x)&=nB_{n-1}(x),\\[3mu]E_{n}'(x)&=nE_{n-1}(x).\end{aligned}}} 
   
 
Translations 
  
    
      
        
          
            
              
                
                  B 
                  
                    n 
                   
                 
                ( 
                x 
                + 
                y 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    n 
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      k 
                     
                    
                      ) 
                     
                   
                 
                
                  B 
                  
                    k 
                   
                 
                ( 
                x 
                ) 
                
                  y 
                  
                    n 
                    − 
                    k 
                   
                 
               
             
            
              
                
                  E 
                  
                    n 
                   
                 
                ( 
                x 
                + 
                y 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    n 
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      k 
                     
                    
                      ) 
                     
                   
                 
                
                  E 
                  
                    k 
                   
                 
                ( 
                x 
                ) 
                
                  y 
                  
                    n 
                    − 
                    k 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}B_{n}(x+y)&=\sum _{k=0}^{n}{n \choose k}B_{k}(x)y^{n-k}\\[3mu]E_{n}(x+y)&=\sum _{k=0}^{n}{n \choose k}E_{k}(x)y^{n-k}\end{aligned}}} 
   
 Appell sequences . (Hermite polynomials  are another example.)
Symmetries 
  
    
      
        
          
            
              
                
                  B 
                  
                    n 
                   
                 
                ( 
                1 
                − 
                x 
                ) 
               
              
                = 
                
                  
                    ( 
                    
                      − 
                      1 
                     
                    ) 
                   
                  
                    n 
                   
                 
                
                  B 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
                , 
               
              
                n 
                ≥ 
                0 
                , 
                
                   and in particular for  
                 
                n 
                ≠ 
                1 
                , 
                  
                
                  B 
                  
                    n 
                   
                 
                ( 
                0 
                ) 
                = 
                
                  B 
                  
                    n 
                   
                 
                ( 
                1 
                ) 
               
             
            
              
                
                  E 
                  
                    n 
                   
                 
                ( 
                1 
                − 
                x 
                ) 
               
              
                = 
                
                  
                    ( 
                    
                      − 
                      1 
                     
                    ) 
                   
                  
                    n 
                   
                 
                
                  E 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
               
             
            
              
                
                  
                    ( 
                    
                      − 
                      1 
                     
                    ) 
                   
                  
                    n 
                   
                 
                
                  B 
                  
                    n 
                   
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                
                  B 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
                + 
                n 
                
                  x 
                  
                    n 
                    − 
                    1 
                   
                 
               
             
            
              
                
                  
                    ( 
                    
                      − 
                      1 
                     
                    ) 
                   
                  
                    n 
                   
                 
                
                  E 
                  
                    n 
                   
                 
                ( 
                − 
                x 
                ) 
               
              
                = 
                − 
                
                  E 
                  
                    n 
                   
                 
                ( 
                x 
                ) 
                + 
                2 
                
                  x 
                  
                    n 
                   
                 
               
             
            
              
                
                  B 
                  
                    n 
                   
                 
                
                  
                    ( 
                   
                 
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    ) 
                   
                 
               
              
                = 
                
                  ( 
                  
                    
                      
                        1 
                        
                          2 
                          
                            n 
                            − 
                            1 
                           
                         
                       
                     
                    − 
                    1 
                   
                  ) 
                 
                
                  B 
                  
                    n 
                   
                 
                , 
               
              
                n 
                ≥ 
                0 
                
                   from the multiplication theorems below. 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}B_{n}(1-x)&=\left(-1\right)^{n}B_{n}(x),&&n\geq 0,{\text{ and in particular for }}n\neq 1,~B_{n}(0)=B_{n}(1)\\[3mu]E_{n}(1-x)&=\left(-1\right)^{n}E_{n}(x)\\[1ex]\left(-1\right)^{n}B_{n}(-x)&=B_{n}(x)+nx^{n-1}\\[3mu]\left(-1\right)^{n}E_{n}(-x)&=-E_{n}(x)+2x^{n}\\[1ex]B_{n}{\bigl (}{\tfrac {1}{2}}{\bigr )}&=\left({\frac {1}{2^{n-1}}}-1\right)B_{n},&&n\geq 0{\text{ from the multiplication theorems below.}}\end{aligned}}} 
   
 Zhi-Wei Sun  and Hao Pan [ 4] r  + s  + t  = n x  + y  + z  = 1
  
    
      
        r 
        [ 
        s 
        , 
        t 
        ; 
        x 
        , 
        y 
        
          ] 
          
            n 
           
         
        + 
        s 
        [ 
        t 
        , 
        r 
        ; 
        y 
        , 
        z 
        
          ] 
          
            n 
           
         
        + 
        t 
        [ 
        r 
        , 
        s 
        ; 
        z 
        , 
        x 
        
          ] 
          
            n 
           
         
        = 
        0 
        , 
       
     
    {\displaystyle r[s,t;x,y]_{n}+s[t,r;y,z]_{n}+t[r,s;z,x]_{n}=0,} 
   
 
  
    
      
        [ 
        s 
        , 
        t 
        ; 
        x 
        , 
        y 
        
          ] 
          
            n 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        
          
            
              ( 
             
            
              s 
              k 
             
            
              ) 
             
           
         
        
          
            
              ( 
             
            
              t 
              
                n 
                − 
                k 
               
             
            
              ) 
             
           
         
        
          B 
          
            n 
            − 
            k 
           
         
        ( 
        x 
        ) 
        
          B 
          
            k 
           
         
        ( 
        y 
        ) 
        . 
       
     
    {\displaystyle [s,t;x,y]_{n}=\sum _{k=0}^{n}(-1)^{k}{s \choose k}{t \choose {n-k}}B_{n-k}(x)B_{k}(y).} 
   
 
Fourier series 
The Fourier series  of the Bernoulli polynomials is also a Dirichlet series , given by the expansion
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        − 
        
          
            
              n 
              ! 
             
            
              ( 
              2 
              π 
              i 
              
                ) 
                
                  n 
                 
               
             
           
         
        
          ∑ 
          
            k 
            ≠ 
            0 
           
         
        
          
            
              e 
              
                2 
                π 
                i 
                k 
                x 
               
             
            
              k 
              
                n 
               
             
           
         
        = 
        − 
        2 
        n 
        ! 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              cos 
               
              
                ( 
                
                  2 
                  k 
                  π 
                  x 
                  − 
                  
                    
                      
                        n 
                        π 
                       
                      2 
                     
                   
                 
                ) 
               
             
            
              ( 
              2 
              k 
              π 
              
                ) 
                
                  n 
                 
               
             
           
         
        . 
       
     
    {\displaystyle B_{n}(x)=-{\frac {n!}{(2\pi i)^{n}}}\sum _{k\not =0}{\frac {e^{2\pi ikx}}{k^{n}}}=-2n!\sum _{k=1}^{\infty }{\frac {\cos \left(2k\pi x-{\frac {n\pi }{2}}\right)}{(2k\pi )^{n}}}.} 
   
 n  limit to suitably scaled trigonometric functions.
This is a special case of the analogous form for the Hurwitz zeta function 
  
    
      
        
          B 
          
            n 
           
         
        ( 
        x 
        ) 
        = 
        − 
        Γ 
        ( 
        n 
        + 
        1 
        ) 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              exp 
               
              ( 
              2 
              π 
              i 
              k 
              x 
              ) 
              + 
              
                e 
                
                  i 
                  π 
                  n 
                 
               
              exp 
               
              ( 
              2 
              π 
              i 
              k 
              ( 
              1 
              − 
              x 
              ) 
              ) 
             
            
              ( 
              2 
              π 
              i 
              k 
              
                ) 
                
                  n 
                 
               
             
           
         
        . 
       
     
    {\displaystyle B_{n}(x)=-\Gamma (n+1)\sum _{k=1}^{\infty }{\frac {\exp(2\pi ikx)+e^{i\pi n}\exp(2\pi ik(1-x))}{(2\pi ik)^{n}}}.} 
   
 
This expansion is valid only for 0 ≤ x  ≤ 1  when n  ≥ 20 < x  < 1  when n  = 1
The Fourier series of the Euler polynomials may also be calculated.  Defining the functions
  
    
      
        
          
            
              
                
                  C 
                  
                    ν 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      cos 
                       
                      ( 
                      ( 
                      2 
                      k 
                      + 
                      1 
                      ) 
                      π 
                      x 
                      ) 
                     
                    
                      ( 
                      2 
                      k 
                      + 
                      1 
                      
                        ) 
                        
                          ν 
                         
                       
                     
                   
                 
               
             
            
              
                
                  S 
                  
                    ν 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      sin 
                       
                      ( 
                      ( 
                      2 
                      k 
                      + 
                      1 
                      ) 
                      π 
                      x 
                      ) 
                     
                    
                      ( 
                      2 
                      k 
                      + 
                      1 
                      
                        ) 
                        
                          ν 
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}C_{\nu }(x)&=\sum _{k=0}^{\infty }{\frac {\cos((2k+1)\pi x)}{(2k+1)^{\nu }}}\\[3mu]S_{\nu }(x)&=\sum _{k=0}^{\infty }{\frac {\sin((2k+1)\pi x)}{(2k+1)^{\nu }}}\end{aligned}}} 
   
 
  
    
      
        ν 
        > 
        1 
       
     
    {\displaystyle \nu >1} 
   
 
  
    
      
        
          
            
              
                
                  C 
                  
                    2 
                    n 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    
                      
                        ( 
                        
                          − 
                          1 
                         
                        ) 
                       
                      
                        n 
                       
                     
                    
                      4 
                      ( 
                      2 
                      n 
                      − 
                      1 
                      ) 
                      ! 
                     
                   
                 
                
                  π 
                  
                    2 
                    n 
                   
                 
                
                  E 
                  
                    2 
                    n 
                    − 
                    1 
                   
                 
                ( 
                x 
                ) 
               
             
            
              
                
                  S 
                  
                    2 
                    n 
                    + 
                    1 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    
                      
                        ( 
                        
                          − 
                          1 
                         
                        ) 
                       
                      
                        n 
                       
                     
                    
                      4 
                      ( 
                      2 
                      n 
                      ) 
                      ! 
                     
                   
                 
                
                  π 
                  
                    2 
                    n 
                    + 
                    1 
                   
                 
                
                  E 
                  
                    2 
                    n 
                   
                 
                ( 
                x 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}C_{2n}(x)&={\frac {\left(-1\right)^{n}}{4(2n-1)!}}\pi ^{2n}E_{2n-1}(x)\\[1ex]S_{2n+1}(x)&={\frac {\left(-1\right)^{n}}{4(2n)!}}\pi ^{2n+1}E_{2n}(x).\end{aligned}}} 
   
 
  
    
      
        
          C 
          
            ν 
           
         
       
     
    {\displaystyle C_{\nu }} 
   
 
  
    
      
        
          S 
          
            ν 
           
         
       
     
    {\displaystyle S_{\nu }} 
   
 
  
    
      
        
          
            
              
                
                  C 
                  
                    ν 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                − 
                
                  C 
                  
                    ν 
                   
                 
                ( 
                1 
                − 
                x 
                ) 
               
             
            
              
                
                  S 
                  
                    ν 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  S 
                  
                    ν 
                   
                 
                ( 
                1 
                − 
                x 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}C_{\nu }(x)&=-C_{\nu }(1-x)\\S_{\nu }(x)&=S_{\nu }(1-x).\end{aligned}}} 
   
 
They are related to the Legendre chi function  
  
    
      
        
          χ 
          
            ν 
           
         
       
     
    {\displaystyle \chi _{\nu }} 
   
 
  
    
      
        
          
            
              
                
                  C 
                  
                    ν 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                Re 
                 
                
                  χ 
                  
                    ν 
                   
                 
                ( 
                
                  e 
                  
                    i 
                    x 
                   
                 
                ) 
               
             
            
              
                
                  S 
                  
                    ν 
                   
                 
                ( 
                x 
                ) 
               
              
                = 
                Im 
                 
                
                  χ 
                  
                    ν 
                   
                 
                ( 
                
                  e 
                  
                    i 
                    x 
                   
                 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}C_{\nu }(x)&=\operatorname {Re} \chi _{\nu }(e^{ix})\\S_{\nu }(x)&=\operatorname {Im} \chi _{\nu }(e^{ix}).\end{aligned}}} 
   
 
Inversion 
The Bernoulli and Euler polynomials may be inverted to express the monomial  in terms of the polynomials.
Specifically, evidently from the above section on integral operators , it follows that  
  
    
      
        
          x 
          
            n 
           
         
        = 
        
          
            1 
            
              n 
              + 
              1 
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          
            
              ( 
             
            
              
                n 
                + 
                1 
               
              k 
             
            
              ) 
             
           
         
        
          B 
          
            k 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle x^{n}={\frac {1}{n+1}}\sum _{k=0}^{n}{n+1 \choose k}B_{k}(x)} 
   
 
  
    
      
        
          x 
          
            n 
           
         
        = 
        
          E 
          
            n 
           
         
        ( 
        x 
        ) 
        + 
        
          
            1 
            2 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
            − 
            1 
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        
          E 
          
            k 
           
         
        ( 
        x 
        ) 
        . 
       
     
    {\displaystyle x^{n}=E_{n}(x)+{\frac {1}{2}}\sum _{k=0}^{n-1}{n \choose k}E_{k}(x).} 
   
 
Relation to falling factorial 
The Bernoulli polynomials may be expanded in terms of the falling factorial  
  
    
      
        ( 
        x 
        
          ) 
          
            k 
           
         
       
     
    {\displaystyle (x)_{k}} 
   
 
  
    
      
        
          B 
          
            n 
            + 
            1 
           
         
        ( 
        x 
        ) 
        = 
        
          B 
          
            n 
            + 
            1 
           
         
        + 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          
            
              n 
              + 
              1 
             
            
              k 
              + 
              1 
             
           
         
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        ( 
        x 
        
          ) 
          
            k 
            + 
            1 
           
         
       
     
    {\displaystyle B_{n+1}(x)=B_{n+1}+\sum _{k=0}^{n}{\frac {n+1}{k+1}}\left\{{\begin{matrix}n\\k\end{matrix}}\right\}(x)_{k+1}} 
   
 
  
    
      
        
          B 
          
            n 
           
         
        = 
        
          B 
          
            n 
           
         
        ( 
        0 
        ) 
       
     
    {\displaystyle B_{n}=B_{n}(0)} 
   
 
  
    
      
        
          { 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          } 
         
        = 
        S 
        ( 
        n 
        , 
        k 
        ) 
       
     
    {\displaystyle \left\{{\begin{matrix}n\\k\end{matrix}}\right\}=S(n,k)} 
   
 Stirling number of the second kind . The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:
  
    
      
        ( 
        x 
        
          ) 
          
            n 
            + 
            1 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          
            
              n 
              + 
              1 
             
            
              k 
              + 
              1 
             
           
         
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
        
          ( 
          
            
              B 
              
                k 
                + 
                1 
               
             
            ( 
            x 
            ) 
            − 
            
              B 
              
                k 
                + 
                1 
               
             
           
          ) 
         
       
     
    {\displaystyle (x)_{n+1}=\sum _{k=0}^{n}{\frac {n+1}{k+1}}\left[{\begin{matrix}n\\k\end{matrix}}\right]\left(B_{k+1}(x)-B_{k+1}\right)} 
   
 
  
    
      
        
          [ 
          
            
              
                
                  n 
                 
               
              
                
                  k 
                 
               
             
           
          ] 
         
        = 
        s 
        ( 
        n 
        , 
        k 
        ) 
       
     
    {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]=s(n,k)} 
   
 Stirling number of the first kind .
Multiplication theorems 
The multiplication theorems  were given by Joseph Ludwig Raabe  in 1851:
For a natural number m ≥1
  
    
      
        
          B 
          
            n 
           
         
        ( 
        m 
        x 
        ) 
        = 
        
          m 
          
            n 
            − 
            1 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            m 
            − 
            1 
           
         
        
          B 
          
            n 
           
         
        
          
            ( 
            
              x 
              + 
              
                
                  k 
                  m 
                 
               
             
            ) 
           
         
       
     
    {\displaystyle B_{n}(mx)=m^{n-1}\sum _{k=0}^{m-1}B_{n}{\left(x+{\frac {k}{m}}\right)}} 
   
 
  
    
      
        
          
            
              
                
                  E 
                  
                    n 
                   
                 
                ( 
                m 
                x 
                ) 
               
              
                = 
                
                  m 
                  
                    n 
                   
                 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    m 
                    − 
                    1 
                   
                 
                
                  
                    ( 
                    
                      − 
                      1 
                     
                    ) 
                   
                  
                    k 
                   
                 
                
                  E 
                  
                    n 
                   
                 
                
                  
                    ( 
                    
                      x 
                      + 
                      
                        
                          k 
                          m 
                         
                       
                     
                    ) 
                   
                 
               
              
                
                   for odd  
                 
                m 
               
             
            
              
                
                  E 
                  
                    n 
                   
                 
                ( 
                m 
                x 
                ) 
               
              
                = 
                
                  
                    
                      − 
                      2 
                     
                    
                      n 
                      + 
                      1 
                     
                   
                 
                
                  m 
                  
                    n 
                   
                 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    m 
                    − 
                    1 
                   
                 
                
                  
                    ( 
                    
                      − 
                      1 
                     
                    ) 
                   
                  
                    k 
                   
                 
                
                  B 
                  
                    n 
                    + 
                    1 
                   
                 
                
                  
                    ( 
                    
                      x 
                      + 
                      
                        
                          k 
                          m 
                         
                       
                     
                    ) 
                   
                 
               
              
                
                   for even  
                 
                m 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}E_{n}(mx)&=m^{n}\sum _{k=0}^{m-1}\left(-1\right)^{k}E_{n}{\left(x+{\frac {k}{m}}\right)}&{\text{ for odd }}m\\[1ex]E_{n}(mx)&={\frac {-2}{n+1}}m^{n}\sum _{k=0}^{m-1}\left(-1\right)^{k}B_{n+1}{\left(x+{\frac {k}{m}}\right)}&{\text{ for even }}m\end{aligned}}} 
   
 
Integrals 
Two definite integrals relating the Bernoulli and Euler polynomials to the Bernoulli and Euler numbers are:[ 5] 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          B 
          
            n 
           
         
        ( 
        t 
        ) 
        
          B 
          
            m 
           
         
        ( 
        t 
        ) 
        d 
        t 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
            − 
            1 
           
         
        
          
            
              m 
              ! 
              n 
              ! 
             
            
              ( 
              m 
              + 
              n 
              ) 
              ! 
             
           
         
        
          B 
          
            n 
            + 
            m 
           
         
        
          for  
         
        m 
        , 
        n 
        ≥ 
        1 
       
     
    {\displaystyle \int _{0}^{1}B_{n}(t)B_{m}(t)\,dt=(-1)^{n-1}{\frac {m!\,n!}{(m+n)!}}B_{n+m}\quad {\text{for }}m,n\geq 1} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          E 
          
            n 
           
         
        ( 
        t 
        ) 
        
          E 
          
            m 
           
         
        ( 
        t 
        ) 
        d 
        t 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        4 
        ( 
        
          2 
          
            m 
            + 
            n 
            + 
            2 
           
         
        − 
        1 
        ) 
        
          
            
              m 
              ! 
              n 
              ! 
             
            
              ( 
              m 
              + 
              n 
              + 
              2 
              ) 
              ! 
             
           
         
        
          B 
          
            n 
            + 
            m 
            + 
            2 
           
         
       
     
    {\displaystyle \int _{0}^{1}E_{n}(t)E_{m}(t)\,dt=(-1)^{n}4(2^{m+n+2}-1){\frac {m!\,n!}{(m+n+2)!}}B_{n+m+2}} 
   
 Another integral formula states[ 6] 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          E 
          
            n 
           
         
        
          ( 
          
            x 
            + 
            y 
           
          ) 
         
        log 
         
        ( 
        tan 
         
        
          
            π 
            2 
           
         
        x 
        ) 
        d 
        x 
        = 
        n 
        ! 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            
              ⌊ 
              
                
                  
                    n 
                    + 
                    1 
                   
                  2 
                 
               
              ⌋ 
             
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  k 
                  − 
                  1 
                 
               
             
            
              π 
              
                2 
                k 
               
             
           
         
        
          ( 
          
            2 
            − 
            
              2 
              
                − 
                2 
                k 
               
             
           
          ) 
         
        ζ 
        ( 
        2 
        k 
        + 
        1 
        ) 
        
          
            
              y 
              
                n 
                + 
                1 
                − 
                2 
                k 
               
             
            
              ( 
              n 
              + 
              1 
              − 
              2 
              k 
              ) 
              ! 
             
           
         
       
     
    {\displaystyle \int _{0}^{1}E_{n}\left(x+y\right)\log(\tan {\frac {\pi }{2}}x)\,dx=n!\sum _{k=1}^{\left\lfloor {\frac {n+1}{2}}\right\rfloor }{\frac {(-1)^{k-1}}{\pi ^{2k}}}\left(2-2^{-2k}\right)\zeta (2k+1){\frac {y^{n+1-2k}}{(n+1-2k)!}}} 
   
 with the special case for 
  
    
      
        y 
        = 
        0 
       
     
    {\displaystyle y=0} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          E 
          
            2 
            n 
            − 
            1 
           
         
        
          ( 
          x 
          ) 
         
        log 
         
        ( 
        tan 
         
        
          
            π 
            2 
           
         
        x 
        ) 
        d 
        x 
        = 
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                  − 
                  1 
                 
               
              ( 
              2 
              n 
              − 
              1 
              ) 
              ! 
             
            
              π 
              
                2 
                n 
               
             
           
         
        
          ( 
          
            2 
            − 
            
              2 
              
                − 
                2 
                n 
               
             
           
          ) 
         
        ζ 
        ( 
        2 
        n 
        + 
        1 
        ) 
       
     
    {\displaystyle \int _{0}^{1}E_{2n-1}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx={\frac {(-1)^{n-1}(2n-1)!}{\pi ^{2n}}}\left(2-2^{-2n}\right)\zeta (2n+1)} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          B 
          
            2 
            n 
            − 
            1 
           
         
        
          ( 
          x 
          ) 
         
        log 
         
        ( 
        tan 
         
        
          
            π 
            2 
           
         
        x 
        ) 
        d 
        x 
        = 
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                  − 
                  1 
                 
               
             
            
              π 
              
                2 
                n 
               
             
           
         
        
          
            
              2 
              
                2 
                n 
                − 
                2 
               
             
            
              ( 
              2 
              n 
              − 
              1 
              ) 
              ! 
             
           
         
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        ( 
        
          2 
          
            2 
            k 
            + 
            1 
           
         
        − 
        1 
        ) 
        ζ 
        ( 
        2 
        k 
        + 
        1 
        ) 
        ζ 
        ( 
        2 
        n 
        − 
        2 
        k 
        ) 
       
     
    {\displaystyle \int _{0}^{1}B_{2n-1}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx={\frac {(-1)^{n-1}}{\pi ^{2n}}}{\frac {2^{2n-2}}{(2n-1)!}}\sum _{k=1}^{n}(2^{2k+1}-1)\zeta (2k+1)\zeta (2n-2k)} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          E 
          
            2 
            n 
           
         
        
          ( 
          x 
          ) 
         
        log 
         
        ( 
        tan 
         
        
          
            π 
            2 
           
         
        x 
        ) 
        d 
        x 
        = 
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          B 
          
            2 
            n 
           
         
        
          ( 
          x 
          ) 
         
        log 
         
        ( 
        tan 
         
        
          
            π 
            2 
           
         
        x 
        ) 
        d 
        x 
        = 
        0 
       
     
    {\displaystyle \int _{0}^{1}E_{2n}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx=\int _{0}^{1}B_{2n}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx=0} 
   
 
  
    
      
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          
            
              
                B 
               
              
                2 
                n 
                − 
                1 
               
             
           
          
            ( 
            x 
            ) 
           
          cot 
           
          
            ( 
            
              π 
              x 
             
            ) 
           
          d 
          x 
         
        = 
        
          
            
              2 
              
                ( 
                
                  2 
                  n 
                  − 
                  1 
                 
                ) 
               
              ! 
             
            
              
                
                  
                    
                      ( 
                      
                        − 
                        1 
                       
                      ) 
                     
                   
                  
                    n 
                    − 
                    1 
                   
                 
               
              
                
                  
                    
                      ( 
                      
                        2 
                        π 
                       
                      ) 
                     
                   
                  
                    2 
                    n 
                    − 
                    1 
                   
                 
               
             
           
         
        ζ 
        
          ( 
          
            2 
            n 
            − 
            1 
           
          ) 
         
       
     
    {\displaystyle \int _{0}^{1}{{{B}_{2n-1}}\left(x\right)\cot \left(\pi x\right)dx}={\frac {2\left(2n-1\right)!}{{{\left(-1\right)}^{n-1}}{{\left(2\pi \right)}^{2n-1}}}}\zeta \left(2n-1\right)} 
   
 
Periodic Bernoulli polynomials 
A periodic Bernoulli polynomial  P n x )fractional part  of the argument x remainder term  in the Euler–Maclaurin formula  relating sums to integrals.  The first polynomial is a sawtooth function .
Strictly these functions are not polynomials at all and more properly should be termed the periodic Bernoulli functions, and P 0 (x )Dirac comb .
The following properties are of interest, valid for all 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
 
  
    
      
        
          P 
          
            k 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle P_{k}(x)} 
   
 
  
    
      
        k 
        > 
        1 
       
     
    {\displaystyle k>1} 
   
 
  
    
      
        
          P 
          
            k 
           
          ′ 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle P_{k}'(x)} 
   
 
  
    
      
        k 
        > 
        2 
       
     
    {\displaystyle k>2} 
   
 
  
    
      
        
          P 
          
            k 
           
          ′ 
         
        ( 
        x 
        ) 
        = 
        k 
        
          P 
          
            k 
            − 
            1 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle P'_{k}(x)=kP_{k-1}(x)} 
   
 
  
    
      
        k 
        > 
        2 
       
     
    {\displaystyle k>2} 
   
 
See also 
References 
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions  with Formulas, Graphs, and Mathematical Tables(See  Chapter 23)  
Apostol, Tom M.  (1976), Introduction to analytic number theory , Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN  978-0-387-90163-3 , MR  0434929 , Zbl  0335.10001 (See chapter 12.11) Dilcher, K. (2010), "Bernoulli and Euler Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions ISBN  978-0-521-19225-5 , MR  2723248  Cvijović, Djurdje; Klinowski, Jacek (1995). "New formulae for the Bernoulli and Euler polynomials at rational arguments" . Proceedings of the American Mathematical Society 123  (5): 1527– 1535. doi :10.1090/S0002-9939-1995-1283544-0 JSTOR  2161144 . Kouba, Omran (2016). "Lecture Notes, Bernoulli Polynomials and Applications". arXiv :1309.7560v2 math.CA ]. Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal . 16  (3): 247– 270. arXiv :math.NT/0506319 doi :10.1007/s11139-007-9102-0 . S2CID  14910435 . (Reviews relationship to the Hurwitz zeta function and Lerch transcendent.) Hugh L. Montgomery ; Robert C. Vaughan  (2007). Multiplicative number theory I. Classical theory . Cambridge tracts in advanced mathematics. Vol. 97. Cambridge: Cambridge Univ. Press. pp. 495– 519. ISBN  978-0-521-84903-6 . 
External links 
Authority control databases 
International National Other