17 equal temperament

In music, 17 equal temperament is the tempered scale derived by dividing the octave into 17 equal steps (equal frequency ratios). Each step represents a frequency ratio of 17√2, or 70.6 cents.
17-ET is the tuning of the regular diatonic tuning in which the tempered perfect fifth is equal to 705.88 cents, as shown in Figure 1 (look for the label "17-TET").
History and use
Alexander J. Ellis refers to a tuning of seventeen tones based on perfect fourths and fifths as the Arabic scale.[2] In the thirteenth century, Middle-Eastern musician Safi al-Din Urmawi developed a theoretical system of seventeen tones to describe Arabic and Persian music, although the tones were not equally spaced. This 17-tone system remained the primary theoretical system until the development of the quarter tone scale.
Notation

Easley Blackwood Jr. created a notation system where sharps and flats raised/lowered 2 steps, identical to ups and downs notation for 17-EDO. ((10*7) mod 17 = 2.) This yields the chromatic scale:
- C, D♭, C♯, D, E♭, D♯, E, F, G♭, F♯, G, A♭, G♯, A, B♭, A♯, B, C
Quarter tone sharps and flats can also be used, yielding the following chromatic scale:
- C, C /D♭, C♯/D /D♭, C♯/D , D, D , D, D /E♭, D♯/E /E♭, D♯/E , E, F, F , E, F, F /G♭, F♯/G /G♭, F♯/G , G, G , G, G /A♭, G♯/A /A♭, G♯/A , A, A , A, A /B♭, A♯/B /B♭, A♯/B , B, C , B, C
Interval size
Below are some intervals in 17 EDO compared to just.

| 17 EDO | |
| just | |
| 12 EDO | 

- interval name - size 
 (steps)- size 
 (cents)- MIDI 
 audio- just 
 ratio- just 
 (cents)- MIDI 
 audio- error - octave - 17 - 1200 - 2:1 - 1200 - 0 - minor seventh - 14 - 988.23 - 16:9 - 996.09 - −7.77 - harmonic seventh - 14 - 988.23 - 7:4 - 968.83 - +19.41 - perfect fifth - 10 - 705.88 - 3:2 - 701.96 - +3.93 - septimal tritone - 8 - 564.71 - 7:5 - 582.51 - −17.81 - tridecimal narrow tritone - 8 - 564.71 - 18:13 - 563.38 - +1.32 - undecimal super-fourth - 8 - 564.71 - 11:8 - 551.32 - +13.39 - perfect fourth - 7 - 494.12 - 4:3 - 498.04 - −3.93 - septimal major third - 6 - 423.53 - 9:7 - 435.08 - −11.55 - undecimal major third - 6 - 423.53 - 14:11 - 417.51 - +6.02 - major third - 5 - 352.94 - 5:4 - 386.31 - −33.37 - tridecimal neutral third - 5 - 352.94 - 16:13 - 359.47 - −6.53 - undecimal neutral third - 5 - 352.94 - 11:9 - 347.41 - +5.53 - minor third - 4 - 282.35 - 6:5 - 315.64 - −33.29 - tridecimal minor third - 4 - 282.35 - 13:11 - 289.21 - −6.86 - septimal minor third - 4 - 282.35 - 7:6 - 266.87 - +15.48 - septimal whole tone - 3 - 211.76 - 8:7 - 231.17 - −19.41 - greater whole tone - 3 - 211.76 - 9:8 - 203.91 - +7.85 - lesser whole tone - 3 - 211.76 - 10:9 - 182.40 - +29.36 - neutral second, lesser undecimal - 2 - 141.18 - 12:11 - 150.64 - −9.46 - greater tridecimal  2 / 3 -tone - 2 - 141.18 - 13:12 - 138.57 - +2.60 - lesser tridecimal  2 / 3 -tone - 2 - 141.18 - 14:13 - 128.30 - +12.88 - septimal diatonic semitone - 2 - 141.18 - 15:14 - 119.44 - +21.73 - diatonic semitone - 2 - 141.18 - 16:15 - 111.73 - +29.45 - septimal chromatic semitone - 1 - 70.59 - 21:20 - 84.47 - −13.88 - chromatic semitone - 1 - 70.59 - 25:24 - 70.67 - −0.08 
Relation to 34 EDO
17 EDO is a subset of 34 EDO, equivalent to every other step in the 34 EDO scale.
References
- ^ Milne, Sethares & Plamondon 2007, pp. 15–32.
- ^ Ellis, Alexander J. (1863). "On the Temperament of Musical Instruments with Fixed Tones", Proceedings of the Royal Society of London, vol. 13. (1863–1864), pp. 404–422.
- ^ Blackwood, Easley (Summer 1991). "Modes and Chord Progressions in Equal Tunings". Perspectives of New Music. 29 (2): 166–200 (175). doi:10.2307/833437. JSTOR 833437.
- ^ Milne, Sethares & Plamondon (2007), p. 29.
Sources
- Milne, Andrew; Sethares, William; Plamondon, James (Winter 2007). "Isomorphic controllers and dynamic tuning: Invariant fingering over a tuning continuum". Computer Music Journal. 31 (4): 15–32. doi:10.1162/comj.2007.31.4.15. S2CID 27906745 – via mitpressjournals.org.
External links
- "The 17-tone Puzzle — And the Neo-medieval Key that Unlocks It" by George Secor
- Libro y Programa Tonalismo, heptadecatonic system applications (in Spanish)
- Georg Hajdu's 1992 ICMC paper on the 17-tone piano project
- "Crocus", 17 equal temperament, 9 tone mode on YouTube, by Wongi Hwang

